ai-prishtina-text2sql-ltm


Nameai-prishtina-text2sql-ltm JSON
Version 1.0.1 PyPI version JSON
download
home_pagehttps://github.com/albanmaxhuni/text2sql-ltm
SummaryAdvanced Text-to-SQL library with AI features
upload_time2025-07-21 14:25:36
maintainerNone
docs_urlNone
authorAlban Maxhuni, PhD
requires_python>=3.8
licenseCommercial
keywords text2sql sql natural-language-processing artificial-intelligence machine-learning database query-generation rag multimodal voice-to-sql image-to-sql sql-validation sql-security sql-explanation schema-discovery query-translation automated-testing long-term-memory enterprise production-ready
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # AI Prishtina - Text2SQL-LTM: The Most Advanced Text-to-SQL Library

[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)
[![PyPI version](https://badge.fury.io/py/text2sql-ltm.svg)](https://badge.fury.io/py/text2sql-ltm)
[![License: Commercial](https://img.shields.io/badge/License-Commercial-red.svg)](#license)
[![Tests](https://img.shields.io/badge/tests-passing-green.svg)](tests/)
[![Coverage](https://img.shields.io/badge/coverage-95%25-brightgreen.svg)](tests/)

## โ˜• Support This Project

If you find this project helpful, please consider supporting it:

[![Donate](https://img.shields.io/badge/Donate-coff.ee%2Falbanmaxhuni-yellow.svg)](https://coff.ee/albanmaxhuni)

**AI PRISHTINA - Text2SQL-LTM** is a comprehensive Text-to-SQL library, featuring cutting-edge AI capabilities. Built with production-ready architecture and to push the boundaries of what's possible in natural language to SQL conversion.

## ๐ŸŒŸ Revolutionary Features

### ๐Ÿง  **RAG-Enhanced Query Generation**
- **Vector-based knowledge retrieval** with semantic search
- **Schema-aware context augmentation** for intelligent SQL generation  
- **Query pattern learning** from successful executions
- **Adaptive retrieval strategies** that improve over time
- **Multi-modal knowledge fusion** across different data sources

### ๐ŸŽค๐Ÿ“ท **Multi-Modal Input Processing** *(Industry First)*
- **Voice-to-SQL**: Real-time speech recognition with SQL generation
- **Image-to-SQL**: OCR and table recognition from screenshots/charts
- **Handwriting recognition** for natural query input
- **Multi-modal fusion** combining voice, image, and text inputs

### ๐Ÿ” **AI-Powered SQL Validation & Auto-Correction**
- **Intelligent syntax validation** with automatic error fixing
- **Security vulnerability detection** and prevention
- **Performance optimization suggestions** with impact analysis
- **Cross-platform compatibility checking**
- **Best practice enforcement** with educational feedback

### ๐ŸŽ“ **Intelligent Query Explanation & Teaching System**
- **Step-by-step query breakdown** with visual execution flow
- **Adaptive explanations** based on user expertise level
- **Interactive learning modes** with guided practice
- **Personalized learning paths** with progress tracking
- **Real-time teaching assistance** for SQL education

### ๐Ÿ” **Automated Schema Discovery & Documentation**
- **AI-powered relationship inference** between tables
- **Column purpose detection** using pattern recognition
- **Data quality assessment** with improvement suggestions
- **Auto-generated documentation** in multiple formats
- **Business rule extraction** from data patterns

### ๐Ÿ”’ **Advanced Security Analysis**
- **SQL injection detection** with real-time prevention
- **Privilege escalation monitoring** and alerts
- **Data exposure analysis** with compliance checking (GDPR, PCI DSS, SOX)
- **Vulnerability scanning** with remediation guidance
- **Security best practice validation**

### ๐ŸŒ **Cross-Platform Query Translation**
- **Intelligent dialect conversion** between 8+ database platforms
- **Syntax optimization** for target platforms
- **Compatibility analysis** with migration guidance
- **Performance tuning** for specific database engines
- **Feature mapping** across different SQL dialects

### ๐Ÿงช **Automated Test Case Generation**
- **Comprehensive test suite creation** for SQL queries
- **Edge case detection** and test generation
- **Performance test automation** with benchmarking
- **Security test scenarios** for vulnerability assessment
- **Data validation testing** with constraint checking

## ๐Ÿš€ Quick Start

### Installation

```bash
pip install text2sql-ltm
```

### 30-Second Setup

```python
import asyncio
from text2sql_ltm import create_simple_agent, Text2SQLSession

async def main():
    # Just provide your API key - everything else uses smart defaults
    agent = create_simple_agent(api_key="your_openai_key")
    
    async with Text2SQLSession(agent) as session:
        result = await session.query(
            "Show me the top 10 customers by revenue this year",
            user_id="user123"
        )
        
        print(f"Generated SQL: {result.sql}")
        print(f"Confidence: {result.confidence}")
        print(f"Explanation: {result.explanation}")

asyncio.run(main())
```

### Feature-Rich Setup

```python
# Enable advanced features with simple flags
agent = create_simple_agent(
    api_key="your_openai_key",
    enable_rag=True,                    # Vector-enhanced generation
    enable_multimodal=True,             # Voice + Image processing  
    enable_security_analysis=True,      # Security scanning
    enable_explanation=True,            # AI teaching
    enable_test_generation=True         # Automated testing
)
```

### Production Configuration

```python
from text2sql_ltm import create_integrated_agent

# Load from configuration file
agent = create_integrated_agent(config_file="config/production.yaml")

# Or use configuration dictionary
agent = create_integrated_agent(config_dict={
    "memory": {
        "storage_backend": "postgresql",
        "storage_url": "postgresql://user:pass@localhost/db"
    },
    "agent": {
        "llm_provider": "openai",
        "llm_model": "gpt-4",
        "llm_api_key": "your_api_key"
    },
    "ai_features": {
        "enable_rag": True,
        "enable_validation": True,
        "enable_multimodal": True,
        "enable_security_analysis": True
    }
})
```

## ๐ŸŽฏ Advanced Examples

### Multi-Modal Processing

```python
# Process voice input
voice_result = await agent.multimodal_processor.process_voice_input(
    audio_data=voice_bytes,
    language="en-US"
)

# Process table image
image_result = await agent.multimodal_processor.process_image_input(
    image_data=image_bytes,
    image_type="table_screenshot"
)

# Combined processing
combined_result = await agent.multimodal_processor.process_multi_modal_input([
    voice_input, image_input, text_input
])
```

### Security Analysis

```python
# Comprehensive security analysis
security_result = await agent.security_analyzer.analyze_security(
    query="SELECT * FROM users WHERE id = ?",
    user_id="user123",
    context={"user_input": True}
)

print(f"Security Score: {security_result.risk_score}/10")
print(f"Vulnerabilities: {len(security_result.vulnerabilities)}")
print(f"Compliance: {security_result.compliance_status}")
```

### Cross-Platform Translation

```python
# Translate between database dialects
translation_result = await agent.query_translator.translate_query(
    query="SELECT TOP 10 * FROM users",
    source_dialect="sqlserver",
    target_dialect="postgresql",
    optimize_for_target=True
)

print(f"Original: {translation_result.original_query}")
print(f"Translated: {translation_result.translated_query}")
print(f"Compatibility: {translation_result.compatibility}")
```

### Automated Testing

```python
# Generate comprehensive test suite
test_suite = await agent.test_generator.generate_test_suite(
    query="SELECT name, COUNT(*) FROM users GROUP BY name",
    schema=schema_info,
    test_types=["functional", "edge_case", "performance", "security"]
)

print(f"Generated {len(test_suite.test_cases)} test cases")
```

## ๐Ÿ—๏ธ Architecture

Text2SQL-LTM features a modular, production-ready architecture:

```
text2sql_ltm/
โ”œโ”€โ”€ core/                 # Core engine and interfaces
โ”œโ”€โ”€ memory/              # Long-term memory system
โ”œโ”€โ”€ rag/                 # RAG components
โ”‚   โ”œโ”€โ”€ retriever.py     # Main RAG retriever
โ”‚   โ”œโ”€โ”€ schema_rag.py    # Schema-specific RAG
โ”‚   โ”œโ”€โ”€ query_rag.py     # Query pattern RAG
โ”‚   โ””โ”€โ”€ adaptive_rag.py  # Self-improving RAG
โ”œโ”€โ”€ ai_features/         # Advanced AI features
โ”‚   โ”œโ”€โ”€ sql_validator.py      # AI-powered validation
โ”‚   โ”œโ”€โ”€ multimodal.py         # Multi-modal processing
โ”‚   โ”œโ”€โ”€ explainer.py          # Intelligent explanation
โ”‚   โ”œโ”€โ”€ schema_discovery.py   # Schema analysis
โ”‚   โ”œโ”€โ”€ query_translator.py   # Cross-platform translation
โ”‚   โ”œโ”€โ”€ security_analyzer.py  # Security analysis
โ”‚   โ””โ”€โ”€ test_generator.py     # Test automation
โ””โ”€โ”€ integrations/        # External integrations
```

## ๐Ÿ”ง Configuration

### YAML Configuration

```yaml
# config/production.yaml
memory:
  storage_backend: "postgresql"
  storage_url: "${DATABASE_URL}"

agent:
  llm_provider: "openai"
  llm_model: "gpt-4"
  llm_api_key: "${OPENAI_API_KEY}"

ai_features:
  enable_rag: true
  enable_validation: true
  enable_multimodal: true
  enable_security_analysis: true
  
  rag:
    vector_store:
      provider: "pinecone"
      api_key: "${PINECONE_API_KEY}"
    embedding:
      provider: "openai"
      api_key: "${OPENAI_API_KEY}"

security:
  require_authentication: true
  rate_limiting_enabled: true
```

### Environment Variables

```bash
# Core API Keys
OPENAI_API_KEY=your_openai_key
DATABASE_URL=postgresql://user:pass@localhost/db

# Optional Services
PINECONE_API_KEY=your_pinecone_key
GOOGLE_VISION_API_KEY=your_google_key
REDIS_URL=redis://localhost:6379
```

## ๐Ÿงช Testing

Run the comprehensive test suite:

```bash
# Install with test dependencies
pip install text2sql-ltm[test]

# Run all tests
pytest tests/ -v

# Run with coverage
pytest tests/ --cov=text2sql_ltm --cov-report=html

# Run specific test categories
pytest tests/test_rag_system.py -v
pytest tests/test_multimodal.py -v
pytest tests/test_security.py -v
```

## ๐Ÿ“š Examples

Comprehensive examples are available in the `examples/` directory:

- **[Basic Usage](examples/basic_usage.py)** - Getting started guide
- **[Advanced Features](examples/advanced_features.py)** - All AI features
- **[Production Deployment](examples/production_deployment.py)** - Enterprise setup
- **[Multi-Modal Processing](examples/multimodal_examples.py)** - Voice and image
- **[Security Analysis](examples/security_examples.py)** - Security features

## ๐Ÿค Support & Licensing

### Commercial License

Text2SQL-LTM is a **commercial product** with advanced enterprise features. 

**For licensing, pricing, and enterprise support, contact:**

**Alban Maxhuni, PhD**
๐Ÿ“ง **Email**: [info@albanmaxhuni.com](mailto:info@albanmaxhuni.com)  
๐ŸŒ **Website**: [albanmaxhuni.com](https://albanmaxhuni.com)

### License Options

- **Individual License**: For personal and small team use
- **Enterprise License**: For large organizations with advanced features
- **Custom License**: Tailored solutions for specific requirements

### What's Included

- โœ… **Full source code access**
- โœ… **Priority technical support**
- โœ… **Regular updates and new features**
- โœ… **Custom integration assistance**
- โœ… **Training and consultation**
- โœ… **SLA guarantees for enterprise**

## ๐Ÿ“ž Getting Started

1. **Install**: `pip install text2sql-ltm`
2. **Contact**: [info@albanmaxhuni.com](mailto:info@albanmaxhuni.com) for licensing
3. **Configure**: Set up your API keys and configuration
4. **Deploy**: Use our production-ready templates
5. **Scale**: Leverage enterprise features for your organization

---

**Text2SQL-LTM: Revolutionizing database interaction through advanced AI.** ๐Ÿš€

*ยฉ 2024 AI Prishtina, Inc. All rights reserved.*

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/albanmaxhuni/text2sql-ltm",
    "name": "ai-prishtina-text2sql-ltm",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "\"Dr. Alban Maxhuni\" <info@albanmaxhuni.com>",
    "keywords": "text2sql, sql, natural-language-processing, artificial-intelligence, machine-learning, database, query-generation, rag, multimodal, voice-to-sql, image-to-sql, sql-validation, sql-security, sql-explanation, schema-discovery, query-translation, automated-testing, long-term-memory, enterprise, production-ready",
    "author": "Alban Maxhuni, PhD",
    "author_email": "\"Alban Maxhuni, PhD\" <info@albanmaxhuni.com>",
    "download_url": "https://files.pythonhosted.org/packages/79/45/73a3489318764f55c948327c7f16b2b12d0fe052045423827b53daea102f/ai_prishtina_text2sql_ltm-1.0.1.tar.gz",
    "platform": "any",
    "description": "# AI Prishtina - Text2SQL-LTM: The Most Advanced Text-to-SQL Library\n\n[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)\n[![PyPI version](https://badge.fury.io/py/text2sql-ltm.svg)](https://badge.fury.io/py/text2sql-ltm)\n[![License: Commercial](https://img.shields.io/badge/License-Commercial-red.svg)](#license)\n[![Tests](https://img.shields.io/badge/tests-passing-green.svg)](tests/)\n[![Coverage](https://img.shields.io/badge/coverage-95%25-brightgreen.svg)](tests/)\n\n## \u2615 Support This Project\n\nIf you find this project helpful, please consider supporting it:\n\n[![Donate](https://img.shields.io/badge/Donate-coff.ee%2Falbanmaxhuni-yellow.svg)](https://coff.ee/albanmaxhuni)\n\n**AI PRISHTINA - Text2SQL-LTM** is a comprehensive Text-to-SQL library, featuring cutting-edge AI capabilities. Built with production-ready architecture and to push the boundaries of what's possible in natural language to SQL conversion.\n\n## \ud83c\udf1f Revolutionary Features\n\n### \ud83e\udde0 **RAG-Enhanced Query Generation**\n- **Vector-based knowledge retrieval** with semantic search\n- **Schema-aware context augmentation** for intelligent SQL generation  \n- **Query pattern learning** from successful executions\n- **Adaptive retrieval strategies** that improve over time\n- **Multi-modal knowledge fusion** across different data sources\n\n### \ud83c\udfa4\ud83d\udcf7 **Multi-Modal Input Processing** *(Industry First)*\n- **Voice-to-SQL**: Real-time speech recognition with SQL generation\n- **Image-to-SQL**: OCR and table recognition from screenshots/charts\n- **Handwriting recognition** for natural query input\n- **Multi-modal fusion** combining voice, image, and text inputs\n\n### \ud83d\udd0d **AI-Powered SQL Validation & Auto-Correction**\n- **Intelligent syntax validation** with automatic error fixing\n- **Security vulnerability detection** and prevention\n- **Performance optimization suggestions** with impact analysis\n- **Cross-platform compatibility checking**\n- **Best practice enforcement** with educational feedback\n\n### \ud83c\udf93 **Intelligent Query Explanation & Teaching System**\n- **Step-by-step query breakdown** with visual execution flow\n- **Adaptive explanations** based on user expertise level\n- **Interactive learning modes** with guided practice\n- **Personalized learning paths** with progress tracking\n- **Real-time teaching assistance** for SQL education\n\n### \ud83d\udd0d **Automated Schema Discovery & Documentation**\n- **AI-powered relationship inference** between tables\n- **Column purpose detection** using pattern recognition\n- **Data quality assessment** with improvement suggestions\n- **Auto-generated documentation** in multiple formats\n- **Business rule extraction** from data patterns\n\n### \ud83d\udd12 **Advanced Security Analysis**\n- **SQL injection detection** with real-time prevention\n- **Privilege escalation monitoring** and alerts\n- **Data exposure analysis** with compliance checking (GDPR, PCI DSS, SOX)\n- **Vulnerability scanning** with remediation guidance\n- **Security best practice validation**\n\n### \ud83c\udf10 **Cross-Platform Query Translation**\n- **Intelligent dialect conversion** between 8+ database platforms\n- **Syntax optimization** for target platforms\n- **Compatibility analysis** with migration guidance\n- **Performance tuning** for specific database engines\n- **Feature mapping** across different SQL dialects\n\n### \ud83e\uddea **Automated Test Case Generation**\n- **Comprehensive test suite creation** for SQL queries\n- **Edge case detection** and test generation\n- **Performance test automation** with benchmarking\n- **Security test scenarios** for vulnerability assessment\n- **Data validation testing** with constraint checking\n\n## \ud83d\ude80 Quick Start\n\n### Installation\n\n```bash\npip install text2sql-ltm\n```\n\n### 30-Second Setup\n\n```python\nimport asyncio\nfrom text2sql_ltm import create_simple_agent, Text2SQLSession\n\nasync def main():\n    # Just provide your API key - everything else uses smart defaults\n    agent = create_simple_agent(api_key=\"your_openai_key\")\n    \n    async with Text2SQLSession(agent) as session:\n        result = await session.query(\n            \"Show me the top 10 customers by revenue this year\",\n            user_id=\"user123\"\n        )\n        \n        print(f\"Generated SQL: {result.sql}\")\n        print(f\"Confidence: {result.confidence}\")\n        print(f\"Explanation: {result.explanation}\")\n\nasyncio.run(main())\n```\n\n### Feature-Rich Setup\n\n```python\n# Enable advanced features with simple flags\nagent = create_simple_agent(\n    api_key=\"your_openai_key\",\n    enable_rag=True,                    # Vector-enhanced generation\n    enable_multimodal=True,             # Voice + Image processing  \n    enable_security_analysis=True,      # Security scanning\n    enable_explanation=True,            # AI teaching\n    enable_test_generation=True         # Automated testing\n)\n```\n\n### Production Configuration\n\n```python\nfrom text2sql_ltm import create_integrated_agent\n\n# Load from configuration file\nagent = create_integrated_agent(config_file=\"config/production.yaml\")\n\n# Or use configuration dictionary\nagent = create_integrated_agent(config_dict={\n    \"memory\": {\n        \"storage_backend\": \"postgresql\",\n        \"storage_url\": \"postgresql://user:pass@localhost/db\"\n    },\n    \"agent\": {\n        \"llm_provider\": \"openai\",\n        \"llm_model\": \"gpt-4\",\n        \"llm_api_key\": \"your_api_key\"\n    },\n    \"ai_features\": {\n        \"enable_rag\": True,\n        \"enable_validation\": True,\n        \"enable_multimodal\": True,\n        \"enable_security_analysis\": True\n    }\n})\n```\n\n## \ud83c\udfaf Advanced Examples\n\n### Multi-Modal Processing\n\n```python\n# Process voice input\nvoice_result = await agent.multimodal_processor.process_voice_input(\n    audio_data=voice_bytes,\n    language=\"en-US\"\n)\n\n# Process table image\nimage_result = await agent.multimodal_processor.process_image_input(\n    image_data=image_bytes,\n    image_type=\"table_screenshot\"\n)\n\n# Combined processing\ncombined_result = await agent.multimodal_processor.process_multi_modal_input([\n    voice_input, image_input, text_input\n])\n```\n\n### Security Analysis\n\n```python\n# Comprehensive security analysis\nsecurity_result = await agent.security_analyzer.analyze_security(\n    query=\"SELECT * FROM users WHERE id = ?\",\n    user_id=\"user123\",\n    context={\"user_input\": True}\n)\n\nprint(f\"Security Score: {security_result.risk_score}/10\")\nprint(f\"Vulnerabilities: {len(security_result.vulnerabilities)}\")\nprint(f\"Compliance: {security_result.compliance_status}\")\n```\n\n### Cross-Platform Translation\n\n```python\n# Translate between database dialects\ntranslation_result = await agent.query_translator.translate_query(\n    query=\"SELECT TOP 10 * FROM users\",\n    source_dialect=\"sqlserver\",\n    target_dialect=\"postgresql\",\n    optimize_for_target=True\n)\n\nprint(f\"Original: {translation_result.original_query}\")\nprint(f\"Translated: {translation_result.translated_query}\")\nprint(f\"Compatibility: {translation_result.compatibility}\")\n```\n\n### Automated Testing\n\n```python\n# Generate comprehensive test suite\ntest_suite = await agent.test_generator.generate_test_suite(\n    query=\"SELECT name, COUNT(*) FROM users GROUP BY name\",\n    schema=schema_info,\n    test_types=[\"functional\", \"edge_case\", \"performance\", \"security\"]\n)\n\nprint(f\"Generated {len(test_suite.test_cases)} test cases\")\n```\n\n## \ud83c\udfd7\ufe0f Architecture\n\nText2SQL-LTM features a modular, production-ready architecture:\n\n```\ntext2sql_ltm/\n\u251c\u2500\u2500 core/                 # Core engine and interfaces\n\u251c\u2500\u2500 memory/              # Long-term memory system\n\u251c\u2500\u2500 rag/                 # RAG components\n\u2502   \u251c\u2500\u2500 retriever.py     # Main RAG retriever\n\u2502   \u251c\u2500\u2500 schema_rag.py    # Schema-specific RAG\n\u2502   \u251c\u2500\u2500 query_rag.py     # Query pattern RAG\n\u2502   \u2514\u2500\u2500 adaptive_rag.py  # Self-improving RAG\n\u251c\u2500\u2500 ai_features/         # Advanced AI features\n\u2502   \u251c\u2500\u2500 sql_validator.py      # AI-powered validation\n\u2502   \u251c\u2500\u2500 multimodal.py         # Multi-modal processing\n\u2502   \u251c\u2500\u2500 explainer.py          # Intelligent explanation\n\u2502   \u251c\u2500\u2500 schema_discovery.py   # Schema analysis\n\u2502   \u251c\u2500\u2500 query_translator.py   # Cross-platform translation\n\u2502   \u251c\u2500\u2500 security_analyzer.py  # Security analysis\n\u2502   \u2514\u2500\u2500 test_generator.py     # Test automation\n\u2514\u2500\u2500 integrations/        # External integrations\n```\n\n## \ud83d\udd27 Configuration\n\n### YAML Configuration\n\n```yaml\n# config/production.yaml\nmemory:\n  storage_backend: \"postgresql\"\n  storage_url: \"${DATABASE_URL}\"\n\nagent:\n  llm_provider: \"openai\"\n  llm_model: \"gpt-4\"\n  llm_api_key: \"${OPENAI_API_KEY}\"\n\nai_features:\n  enable_rag: true\n  enable_validation: true\n  enable_multimodal: true\n  enable_security_analysis: true\n  \n  rag:\n    vector_store:\n      provider: \"pinecone\"\n      api_key: \"${PINECONE_API_KEY}\"\n    embedding:\n      provider: \"openai\"\n      api_key: \"${OPENAI_API_KEY}\"\n\nsecurity:\n  require_authentication: true\n  rate_limiting_enabled: true\n```\n\n### Environment Variables\n\n```bash\n# Core API Keys\nOPENAI_API_KEY=your_openai_key\nDATABASE_URL=postgresql://user:pass@localhost/db\n\n# Optional Services\nPINECONE_API_KEY=your_pinecone_key\nGOOGLE_VISION_API_KEY=your_google_key\nREDIS_URL=redis://localhost:6379\n```\n\n## \ud83e\uddea Testing\n\nRun the comprehensive test suite:\n\n```bash\n# Install with test dependencies\npip install text2sql-ltm[test]\n\n# Run all tests\npytest tests/ -v\n\n# Run with coverage\npytest tests/ --cov=text2sql_ltm --cov-report=html\n\n# Run specific test categories\npytest tests/test_rag_system.py -v\npytest tests/test_multimodal.py -v\npytest tests/test_security.py -v\n```\n\n## \ud83d\udcda Examples\n\nComprehensive examples are available in the `examples/` directory:\n\n- **[Basic Usage](examples/basic_usage.py)** - Getting started guide\n- **[Advanced Features](examples/advanced_features.py)** - All AI features\n- **[Production Deployment](examples/production_deployment.py)** - Enterprise setup\n- **[Multi-Modal Processing](examples/multimodal_examples.py)** - Voice and image\n- **[Security Analysis](examples/security_examples.py)** - Security features\n\n## \ud83e\udd1d Support & Licensing\n\n### Commercial License\n\nText2SQL-LTM is a **commercial product** with advanced enterprise features. \n\n**For licensing, pricing, and enterprise support, contact:**\n\n**Alban Maxhuni, PhD**\n\ud83d\udce7 **Email**: [info@albanmaxhuni.com](mailto:info@albanmaxhuni.com)  \n\ud83c\udf10 **Website**: [albanmaxhuni.com](https://albanmaxhuni.com)\n\n### License Options\n\n- **Individual License**: For personal and small team use\n- **Enterprise License**: For large organizations with advanced features\n- **Custom License**: Tailored solutions for specific requirements\n\n### What's Included\n\n- \u2705 **Full source code access**\n- \u2705 **Priority technical support**\n- \u2705 **Regular updates and new features**\n- \u2705 **Custom integration assistance**\n- \u2705 **Training and consultation**\n- \u2705 **SLA guarantees for enterprise**\n\n## \ud83d\udcde Getting Started\n\n1. **Install**: `pip install text2sql-ltm`\n2. **Contact**: [info@albanmaxhuni.com](mailto:info@albanmaxhuni.com) for licensing\n3. **Configure**: Set up your API keys and configuration\n4. **Deploy**: Use our production-ready templates\n5. **Scale**: Leverage enterprise features for your organization\n\n---\n\n**Text2SQL-LTM: Revolutionizing database interaction through advanced AI.** \ud83d\ude80\n\n*\u00a9 2024 AI Prishtina, Inc. All rights reserved.*\n",
    "bugtrack_url": null,
    "license": "Commercial",
    "summary": "Advanced Text-to-SQL library with AI features",
    "version": "1.0.1",
    "project_urls": {
        "Bug Tracker": "https://github.com/albanmaxhuni/text2sql-ltm/issues",
        "Contact": "https://albanmaxhuni.com",
        "Documentation": "https://text2sql-ltm.readthedocs.io/",
        "Homepage": "https://github.com/albanmaxhuni/text2sql-ltm",
        "Repository": "https://github.com/albanmaxhuni/text2sql-ltm"
    },
    "split_keywords": [
        "text2sql",
        " sql",
        " natural-language-processing",
        " artificial-intelligence",
        " machine-learning",
        " database",
        " query-generation",
        " rag",
        " multimodal",
        " voice-to-sql",
        " image-to-sql",
        " sql-validation",
        " sql-security",
        " sql-explanation",
        " schema-discovery",
        " query-translation",
        " automated-testing",
        " long-term-memory",
        " enterprise",
        " production-ready"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "d31af03bf85f93e2ec6fc597425c8c7a7d8c039747a3d83094ecf973de82f1fc",
                "md5": "5422e381abb62ffcb36284763f6b2954",
                "sha256": "340cc314ce5b6b3137c21a4f5df6961439a4fc6189cd6cce366a23601d72d2f7"
            },
            "downloads": -1,
            "filename": "ai_prishtina_text2sql_ltm-1.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "5422e381abb62ffcb36284763f6b2954",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 183407,
            "upload_time": "2025-07-21T14:25:35",
            "upload_time_iso_8601": "2025-07-21T14:25:35.630825Z",
            "url": "https://files.pythonhosted.org/packages/d3/1a/f03bf85f93e2ec6fc597425c8c7a7d8c039747a3d83094ecf973de82f1fc/ai_prishtina_text2sql_ltm-1.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "794573a3489318764f55c948327c7f16b2b12d0fe052045423827b53daea102f",
                "md5": "c29f50babdcea113a11adeca79312ba3",
                "sha256": "f8d4d5f79c62916206db95fe840e4be0e35493fa0d7870fc394e7f2873747805"
            },
            "downloads": -1,
            "filename": "ai_prishtina_text2sql_ltm-1.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "c29f50babdcea113a11adeca79312ba3",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 244490,
            "upload_time": "2025-07-21T14:25:36",
            "upload_time_iso_8601": "2025-07-21T14:25:36.931725Z",
            "url": "https://files.pythonhosted.org/packages/79/45/73a3489318764f55c948327c7f16b2b12d0fe052045423827b53daea102f/ai_prishtina_text2sql_ltm-1.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-21 14:25:36",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "albanmaxhuni",
    "github_project": "text2sql-ltm",
    "github_not_found": true,
    "lcname": "ai-prishtina-text2sql-ltm"
}
        
Elapsed time: 1.02559s