ai-traffic-light-simulator


Nameai-traffic-light-simulator JSON
Version 1.0.1 PyPI version JSON
download
home_page
SummaryTraffic simulation for traffic light A.I. training
upload_time2023-05-09 20:35:28
maintainer
docs_urlNone
author
requires_python>=3.8
license
keywords artifical intelligence traffic traffic simulator simulation cellular automata
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # TrafficLightAI
A python traffic simulation serving as a playground to create traffic light A.I. systems. The traffic simulation uses a cellular automata approach to simulate large traffic grids. The simulation is optimized with Numba.

![image](https://user-images.githubusercontent.com/21147581/231293375-88a54f54-2462-4189-8153-8945c1621249.png)


## Installation

```sh
pip install ai-traffic-light-simulator
```

## Example

```py
from traffic_simulation_numba import TrafficSimulation
# OR from traffic_simulation import TrafficSimulation
import random

NORTH_SOUTH_GREEN = 0
EAST_WEST_GREEN = 1

# A basic A.I. which randomly determines light timings
# Inputs: [North waiting, East waiting, South waiting, West Waiting, Previous Light Direction]
def my_ai(inputs):
    if inputs[-1] == NORTH_SOUTH_GREEN:
        return EAST_WEST_GREEN, random.randint(1,30)
    if inputs[-1] == EAST_WEST_GREEN:
        return NORTH_SOUTH_GREEN, random.randint(1,30)

# Make traffic simulation object with our naive A.I.
sim = TrafficSimulation(
    my_ai, 
    grid_size_x=8,
    grid_size_y=8, 
    lane_length=10,
    max_speed=5, 
    in_rate=0.2, 
    initial_density=0.1, 
    seed=42
)

results = sim.run_simulation(1000) # Runs the simulation for 1000 ticks
print(results)
# Returns { 'cars_stopped': 131680, 'carbon_emissions': 672824 }

# Render a frame of the simulation after 1000 ticks
sim.render_frame("Small.png")
```

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "ai-traffic-light-simulator",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "",
    "keywords": "artifical intelligence,traffic,traffic simulator,simulation,cellular automata",
    "author": "",
    "author_email": "",
    "download_url": "",
    "platform": null,
    "description": "# TrafficLightAI\r\nA python traffic simulation serving as a playground to create traffic light A.I. systems. The traffic simulation uses a cellular automata approach to simulate large traffic grids. The simulation is optimized with Numba.\r\n\r\n![image](https://user-images.githubusercontent.com/21147581/231293375-88a54f54-2462-4189-8153-8945c1621249.png)\r\n\r\n\r\n## Installation\r\n\r\n```sh\r\npip install ai-traffic-light-simulator\r\n```\r\n\r\n## Example\r\n\r\n```py\r\nfrom traffic_simulation_numba import TrafficSimulation\r\n# OR from traffic_simulation import TrafficSimulation\r\nimport random\r\n\r\nNORTH_SOUTH_GREEN = 0\r\nEAST_WEST_GREEN = 1\r\n\r\n# A basic A.I. which randomly determines light timings\r\n# Inputs: [North waiting, East waiting, South waiting, West Waiting, Previous Light Direction]\r\ndef my_ai(inputs):\r\n    if inputs[-1] == NORTH_SOUTH_GREEN:\r\n        return EAST_WEST_GREEN, random.randint(1,30)\r\n    if inputs[-1] == EAST_WEST_GREEN:\r\n        return NORTH_SOUTH_GREEN, random.randint(1,30)\r\n\r\n# Make traffic simulation object with our naive A.I.\r\nsim = TrafficSimulation(\r\n    my_ai, \r\n    grid_size_x=8,\r\n    grid_size_y=8, \r\n    lane_length=10,\r\n    max_speed=5, \r\n    in_rate=0.2, \r\n    initial_density=0.1, \r\n    seed=42\r\n)\r\n\r\nresults = sim.run_simulation(1000) # Runs the simulation for 1000 ticks\r\nprint(results)\r\n# Returns { 'cars_stopped': 131680, 'carbon_emissions': 672824 }\r\n\r\n# Render a frame of the simulation after 1000 ticks\r\nsim.render_frame(\"Small.png\")\r\n```\r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Traffic simulation for traffic light A.I. training",
    "version": "1.0.1",
    "project_urls": {
        "Homepage": "https://github.com/bart1259/TrafficLightAI"
    },
    "split_keywords": [
        "artifical intelligence",
        "traffic",
        "traffic simulator",
        "simulation",
        "cellular automata"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "df36aafe120a50172d6d7b17d511bc990843bfe82b655a67fb7156d01ead8052",
                "md5": "03371ad5ff10ed852a23476bce211090",
                "sha256": "26bff7b19ee61f6194a22fc9894f4c5d2ddc7f6eb5bef27947e5d3bc41c2f6e7"
            },
            "downloads": -1,
            "filename": "ai_traffic_light_simulator-1.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "03371ad5ff10ed852a23476bce211090",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 14228,
            "upload_time": "2023-05-09T20:35:28",
            "upload_time_iso_8601": "2023-05-09T20:35:28.647463Z",
            "url": "https://files.pythonhosted.org/packages/df/36/aafe120a50172d6d7b17d511bc990843bfe82b655a67fb7156d01ead8052/ai_traffic_light_simulator-1.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-05-09 20:35:28",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "bart1259",
    "github_project": "TrafficLightAI",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "ai-traffic-light-simulator"
}
        
Elapsed time: 0.07523s