aim2dat


Nameaim2dat JSON
Version 0.2.0 PyPI version JSON
download
home_pagehttps://github.com/aim2dat/aim2dat
SummaryAutomated Ab-Initio Materials Modeling and Data Analysis Toolkit: Python library for pre-, post-processing and data management of ab-initio high-throughput workflows for computational materials science.
upload_time2024-11-07 12:03:57
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseLGPL-2.1
keywords ab-initio dft high-throughput automated materials-modeling data-analysis science machine learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # aim2dat

aim2dat (Automated Ab-Initio Materials Modeling and Data Analysis Toolkit) is a library for pre-, post-processing and data management of ab-initio high-throughput workflows for computational materials science.
For further details and documentation, please visit https://aim2dat.github.io.

## Feature List

* Managing and analysing sets of crystals and molecules.
* Ab-initio high-throughput calculations based on [AiiDA](https://www.aiida.net).
* Plotting material's properties such as electronic band structures, projected density of states or phase diagrams.
* Interface to machine learning routines via [sci-kit learn](https://scikit-learn.org/stable/).
* Function analysis: discretizing and comparing 2-dimensional functions.
* Parsers for the DFT codes [CP2K](https://www.cp2k.org/about), [FHI-Aims](https://fhi-aims.org) and [QuantumESPRESSO](https://www.quantum-espresso.org) as well as [phonopy](https://phonopy.github.io/phonopy/) and [critic2](https://aoterodelaroza.github.io/critic2/).

## Installation

```sh
pip install aim2dat
```

More detailed instructions are given in the documentation (https://aim2dat.github.io/installation.html).

## Contributing

Contributions are very welcome and are directly handled via the code's [github repository](https://github.com/aim2dat/aim2dat).
Bug reports, feature requests or general discussions can be accomplished by filing an [issue](https://github.com/aim2dat/aim2dat/issues).
Extensions or changes to the code can also be directly suggested by opening a [pull request](https://github.com/aim2dat/aim2dat/pulls).
Some guidelines for code contributions are given in the documentation (https://aim2dat.github.io/#contributing).

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/aim2dat/aim2dat",
    "name": "aim2dat",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "Holger-Dietrich Sa\u00dfnick <holger-dietrich.sassnick@uni-oldenburg.de>",
    "keywords": "ab-initio, dft, high-throughput, automated, materials-modeling, data-analysis, science, machine learning",
    "author": null,
    "author_email": "Holger-Dietrich Sa\u00dfnick <holger-dietrich.sassnick@uni-oldenburg.de>, Timo Reents <timo.reents@uni-oldenburg.de>, Joshua Edzards <joshua.edzards@uni-oldenburg.de>",
    "download_url": "https://files.pythonhosted.org/packages/bf/33/116a59d6343d46d83cca50d5d1dffa54bb10bd9e8970b199e71207b13160/aim2dat-0.2.0.tar.gz",
    "platform": null,
    "description": "# aim2dat\n\naim2dat (Automated Ab-Initio Materials Modeling and Data Analysis Toolkit) is a library for pre-, post-processing and data management of ab-initio high-throughput workflows for computational materials science.\nFor further details and documentation, please visit https://aim2dat.github.io.\n\n## Feature List\n\n* Managing and analysing sets of crystals and molecules.\n* Ab-initio high-throughput calculations based on [AiiDA](https://www.aiida.net).\n* Plotting material's properties such as electronic band structures, projected density of states or phase diagrams.\n* Interface to machine learning routines via [sci-kit learn](https://scikit-learn.org/stable/).\n* Function analysis: discretizing and comparing 2-dimensional functions.\n* Parsers for the DFT codes [CP2K](https://www.cp2k.org/about), [FHI-Aims](https://fhi-aims.org) and [QuantumESPRESSO](https://www.quantum-espresso.org) as well as [phonopy](https://phonopy.github.io/phonopy/) and [critic2](https://aoterodelaroza.github.io/critic2/).\n\n## Installation\n\n```sh\npip install aim2dat\n```\n\nMore detailed instructions are given in the documentation (https://aim2dat.github.io/installation.html).\n\n## Contributing\n\nContributions are very welcome and are directly handled via the code's [github repository](https://github.com/aim2dat/aim2dat).\nBug reports, feature requests or general discussions can be accomplished by filing an [issue](https://github.com/aim2dat/aim2dat/issues).\nExtensions or changes to the code can also be directly suggested by opening a [pull request](https://github.com/aim2dat/aim2dat/pulls).\nSome guidelines for code contributions are given in the documentation (https://aim2dat.github.io/#contributing).\n",
    "bugtrack_url": null,
    "license": "LGPL-2.1",
    "summary": "Automated Ab-Initio Materials Modeling and Data Analysis Toolkit: Python library for pre-, post-processing and data management of ab-initio high-throughput workflows for computational materials science.",
    "version": "0.2.0",
    "project_urls": {
        "Changelog": "https://github.com/aim2dat/aim2dat/blob/main/CHANGELOG",
        "Homepage": "https://github.com/aim2dat/aim2dat",
        "Issues": "https://github.com/aim2dat/aim2dat/issues",
        "Repository": "https://github.com/aim2dat/aim2dat.git"
    },
    "split_keywords": [
        "ab-initio",
        " dft",
        " high-throughput",
        " automated",
        " materials-modeling",
        " data-analysis",
        " science",
        " machine learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "735bdb63d5487407f6ec1e141d64aa7fb01d41bd9d56754b4b72167a17ae939d",
                "md5": "93aa3b1c57a92f9319fee71a4fc9a1de",
                "sha256": "057d89fe99281d6eb1d83d6fb37d5b06003093f015633abf57f8d93d28979ea4"
            },
            "downloads": -1,
            "filename": "aim2dat-0.2.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "93aa3b1c57a92f9319fee71a4fc9a1de",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 364559,
            "upload_time": "2024-11-07T12:03:54",
            "upload_time_iso_8601": "2024-11-07T12:03:54.709497Z",
            "url": "https://files.pythonhosted.org/packages/73/5b/db63d5487407f6ec1e141d64aa7fb01d41bd9d56754b4b72167a17ae939d/aim2dat-0.2.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "bf33116a59d6343d46d83cca50d5d1dffa54bb10bd9e8970b199e71207b13160",
                "md5": "76f57a662c9ae6d48776a473aa61a0c5",
                "sha256": "b9ec511441b1b8e1a80807620fe7219cfff8b23c48136dcf9e625830040a5901"
            },
            "downloads": -1,
            "filename": "aim2dat-0.2.0.tar.gz",
            "has_sig": false,
            "md5_digest": "76f57a662c9ae6d48776a473aa61a0c5",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 272746,
            "upload_time": "2024-11-07T12:03:57",
            "upload_time_iso_8601": "2024-11-07T12:03:57.013180Z",
            "url": "https://files.pythonhosted.org/packages/bf/33/116a59d6343d46d83cca50d5d1dffa54bb10bd9e8970b199e71207b13160/aim2dat-0.2.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-07 12:03:57",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "aim2dat",
    "github_project": "aim2dat",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "aim2dat"
}
        
Elapsed time: 0.36318s