aimDIAS


NameaimDIAS JSON
Version 1.1.0 PyPI version JSON
download
home_pagehttps://github.com/kangmg/aimDIAS
SummarySUPER FAST D/I analysis with aimnet2
upload_time2024-07-09 22:44:33
maintainerNone
docs_urlNone
authorKang mingi
requires_python>=3.10.0
licenseNone
keywords chemistry computational chemistry machine learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![DOI](https://sandbox.zenodo.org/badge/795712401.svg)](https://sandbox.zenodo.org/doi/10.5072/zenodo.53479)

![image](https://github.com/kangmg/aimDIAS/assets/59556369/cb3a401d-6ea2-4a26-85e4-085c143d6485)

aim(AIMNet2) + DIAS(distortion interaction analysis)
---
`aimDIAS` is a Python package compatible with IPython that enables SUPER-FAST Distortion Interaction Analysis (or activation strain analysis) using aimnet2 models.

<br/>

## Colab Tutorials
aimDIAS is currently in ***beta version***. Functions may change depending on the version, so please check the version number.

|notebook| aimDIAS version|description|
|:-:|:-:|:-:|
|[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/kangmg/aimDIAS/blob/main/notebooks/aimDIAS_tutorials.ipynb) | v. 1.0 | basic tutorials |

<br/>

## Basic Usage
For detail, see `docs/*`, `notebooks/*`

- Draw your molecule
```python
from aimDIAS import draw_xyz

draw_xyz("h2o.xyz", charge=0)
```
  
- Run calculation
```python
from aimDIAS import aimDIAS_run

fp = {
  "frag_1" : (-1, [1, 2]),
  "frag_2" : (+1, [3])
  }

aimDIAS_run(trajFile="h2o.xyz", fragments_params=fp)
```

- Plot your Result without calculation
```python
from aimDIAS import aimDIAS_run

gp = {"distance" : "1 2"}

fp = {
  "frag_1" : (-1, [1, 2]),
  "frag_2" : (+1, [3])
  }

aimDIAS_run(trajFile="h2o.xyz",
            fragments_params=fp,
            mode="plot",
            axis_type="distance",
            geo_param=gp)
```

<br/>

## Gallery

### ***Diels-Alder reaction***

> ![image](https://github.com/kangmg/aimDIAS/assets/59556369/08b1132b-0a18-4f75-bfa9-2144504804fe)

<br/>

### ***Wittig Rection***

> ![image](https://github.com/kangmg/aimDIAS/assets/59556369/a19417f7-6334-4e4a-a702-7eb37b748f4e)



<br/>

## How to Install
> ***pip***
- 
  ```shell
  pip install aimDIAS # old version

  pip install git+https://github.com/kangmg/aimDIAS.git # current version
  ```

> ***git clone***
- terminal
  ```shell
  ### terminal ###
  git clone https://github.com/kangmg/aimDIAS

  
  pip install -q -r path/to/aimDIAS/requirements.txt
  ```
- ipython
  ```python
  ### python ###
  import sys
  sys.path.append("path/to/aimDIAS")
  ```
<br/>

## Requirements
python >= 3.10.0

<br/>

## Share your Data

> Share your files and contribute to the community!

By sharing your xyz trajectory files in the ***Discussion section***, you can make them available as sample data for everyone to use. Please refer to this [discussion link](https://github.com/kangmg/aimDIAS/discussions/2) for more information:

![image](https://github.com/kangmg/aimDIAS/assets/59556369/45aa5c96-32ca-4b03-b721-df1785c9339c)

Files posted in the Discussion section will be uploaded to the `samples/` directory in the project repository for easy download and utilization with the `load_data()` function.

<br/>

## Bug Report
kangmg@korea.ac.kr or [issue in github](https://github.com/kangmg/aimDIAS/issues)

> ***I'm always happy to hear feedback and suggestions. Feel free to contact me anytime.***

<br/>


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/kangmg/aimDIAS",
    "name": "aimDIAS",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10.0",
    "maintainer_email": null,
    "keywords": "chemistry, computational chemistry, machine learning",
    "author": "Kang mingi",
    "author_email": "kangmg@korea.ac.kr",
    "download_url": "https://files.pythonhosted.org/packages/d5/5c/eb2f829a5d43016034f115a77ff9fede4087b84533302ff74e98fea40a04/aimDIAS-1.1.0.tar.gz",
    "platform": null,
    "description": "[![DOI](https://sandbox.zenodo.org/badge/795712401.svg)](https://sandbox.zenodo.org/doi/10.5072/zenodo.53479)\r\n\r\n![image](https://github.com/kangmg/aimDIAS/assets/59556369/cb3a401d-6ea2-4a26-85e4-085c143d6485)\r\n\r\naim(AIMNet2) + DIAS(distortion interaction analysis)\r\n---\r\n`aimDIAS` is a Python package compatible with IPython that enables SUPER-FAST Distortion Interaction Analysis (or activation strain analysis) using aimnet2 models.\r\n\r\n<br/>\r\n\r\n## Colab Tutorials\r\naimDIAS is currently in ***beta version***. Functions may change depending on the version, so please check the version number.\r\n\r\n|notebook| aimDIAS version|description|\r\n|:-:|:-:|:-:|\r\n|[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/kangmg/aimDIAS/blob/main/notebooks/aimDIAS_tutorials.ipynb) | v. 1.0 | basic tutorials |\r\n\r\n<br/>\r\n\r\n## Basic Usage\r\nFor detail, see `docs/*`, `notebooks/*`\r\n\r\n- Draw your molecule\r\n```python\r\nfrom aimDIAS import draw_xyz\r\n\r\ndraw_xyz(\"h2o.xyz\", charge=0)\r\n```\r\n  \r\n- Run calculation\r\n```python\r\nfrom aimDIAS import aimDIAS_run\r\n\r\nfp = {\r\n  \"frag_1\" : (-1, [1, 2]),\r\n  \"frag_2\" : (+1, [3])\r\n  }\r\n\r\naimDIAS_run(trajFile=\"h2o.xyz\", fragments_params=fp)\r\n```\r\n\r\n- Plot your Result without calculation\r\n```python\r\nfrom aimDIAS import aimDIAS_run\r\n\r\ngp = {\"distance\" : \"1 2\"}\r\n\r\nfp = {\r\n  \"frag_1\" : (-1, [1, 2]),\r\n  \"frag_2\" : (+1, [3])\r\n  }\r\n\r\naimDIAS_run(trajFile=\"h2o.xyz\",\r\n            fragments_params=fp,\r\n            mode=\"plot\",\r\n            axis_type=\"distance\",\r\n            geo_param=gp)\r\n```\r\n\r\n<br/>\r\n\r\n## Gallery\r\n\r\n### ***Diels-Alder reaction***\r\n\r\n> ![image](https://github.com/kangmg/aimDIAS/assets/59556369/08b1132b-0a18-4f75-bfa9-2144504804fe)\r\n\r\n<br/>\r\n\r\n### ***Wittig Rection***\r\n\r\n> ![image](https://github.com/kangmg/aimDIAS/assets/59556369/a19417f7-6334-4e4a-a702-7eb37b748f4e)\r\n\r\n\r\n\r\n<br/>\r\n\r\n## How to Install\r\n> ***pip***\r\n- \r\n  ```shell\r\n  pip install aimDIAS # old version\r\n\r\n  pip install git+https://github.com/kangmg/aimDIAS.git # current version\r\n  ```\r\n\r\n> ***git clone***\r\n- terminal\r\n  ```shell\r\n  ### terminal ###\r\n  git clone https://github.com/kangmg/aimDIAS\r\n\r\n  \r\n  pip install -q -r path/to/aimDIAS/requirements.txt\r\n  ```\r\n- ipython\r\n  ```python\r\n  ### python ###\r\n  import sys\r\n  sys.path.append(\"path/to/aimDIAS\")\r\n  ```\r\n<br/>\r\n\r\n## Requirements\r\npython >= 3.10.0\r\n\r\n<br/>\r\n\r\n## Share your Data\r\n\r\n> Share your files and contribute to the community!\r\n\r\nBy sharing your xyz trajectory files in the ***Discussion section***, you can make them available as sample data for everyone to use. Please refer to this [discussion link](https://github.com/kangmg/aimDIAS/discussions/2) for more information:\r\n\r\n![image](https://github.com/kangmg/aimDIAS/assets/59556369/45aa5c96-32ca-4b03-b721-df1785c9339c)\r\n\r\nFiles posted in the Discussion section will be uploaded to the `samples/` directory in the project repository for easy download and utilization with the `load_data()` function.\r\n\r\n<br/>\r\n\r\n## Bug Report\r\nkangmg@korea.ac.kr or [issue in github](https://github.com/kangmg/aimDIAS/issues)\r\n\r\n> ***I'm always happy to hear feedback and suggestions. Feel free to contact me anytime.***\r\n\r\n<br/>\r\n\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "SUPER FAST D/I analysis with aimnet2",
    "version": "1.1.0",
    "project_urls": {
        "Homepage": "https://github.com/kangmg/aimDIAS"
    },
    "split_keywords": [
        "chemistry",
        " computational chemistry",
        " machine learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "56c91d3cba9880d2c03543e2b441e46578a9134941763937529c509ab20e3b21",
                "md5": "af1a8feb02e4935e3104485787f84d07",
                "sha256": "0d91f6fd2e7a2ad275e6091bdd8acfcb1c0213c721856fd19108fd00ab1ba870"
            },
            "downloads": -1,
            "filename": "aimDIAS-1.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "af1a8feb02e4935e3104485787f84d07",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10.0",
            "size": 69473062,
            "upload_time": "2024-07-09T22:44:25",
            "upload_time_iso_8601": "2024-07-09T22:44:25.664770Z",
            "url": "https://files.pythonhosted.org/packages/56/c9/1d3cba9880d2c03543e2b441e46578a9134941763937529c509ab20e3b21/aimDIAS-1.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d55ceb2f829a5d43016034f115a77ff9fede4087b84533302ff74e98fea40a04",
                "md5": "21ff2d984c636765dbd514ff2af7e407",
                "sha256": "999cdb953a2ad355b2ee46401ff78d33cb06d7b5003ed4b66929038c1d38e21b"
            },
            "downloads": -1,
            "filename": "aimDIAS-1.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "21ff2d984c636765dbd514ff2af7e407",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10.0",
            "size": 69336555,
            "upload_time": "2024-07-09T22:44:33",
            "upload_time_iso_8601": "2024-07-09T22:44:33.292208Z",
            "url": "https://files.pythonhosted.org/packages/d5/5c/eb2f829a5d43016034f115a77ff9fede4087b84533302ff74e98fea40a04/aimDIAS-1.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-07-09 22:44:33",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "kangmg",
    "github_project": "aimDIAS",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "aimdias"
}
        
Elapsed time: 0.48439s