aimmd


Nameaimmd JSON
Version 0.9.3 PyPI version JSON
download
home_pageNone
Summaryaimmd (AI for Molecular Mechanism Discovery) autonomously steers (a large number of) molecular dynamics simulations to efficiently sampleand understand rare transition events.
upload_time2025-08-03 14:17:25
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseNone
keywords science md molecular dynamics molecular-dynamics path sampling transition path sampling tps machine learning ml artificial intelligence ai committor commitment probability reaction coordinate rc high performance computing hpc
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage
            # aimmd

[![codecov][codecov-badge]][codecov-link] [![Documentation Status][rtd-badge]][rtd-link] [![PyPI][pypi-badge]][pypi-link]

aimmd (AI for Molecular Mechanism Discovery) autonomously steers (a large number of) molecular dynamics simulations to efficiently sample and understand rare transition events.

## Installation

Installing aimmd from [PyPi][pypi-link] is as easy as:

```bash
pip install aimmd
```

For more see the [documentation](rtd-link).

## Documentation and Code Examples

Please see the [documentation](rt-link) for more information on aimmd and/or the jupyter notebooks in the `examples` folder for code examples.

## Contributing

All contributions are appreciated! Please refer to the [documentation][rtd-link] for information.

---
<sub>This README.md is printed from 100% recycled electrons.</sub>

[codecov-link]: https://app.codecov.io/gh/bio-phys/aimmd
[codecov-badge]: https://img.shields.io/codecov/c/github/bio-phys/aimmd

[rtd-link]: https://aimmd.readthedocs.io/en/latest/
[rtd-badge]: https://readthedocs.org/projects/aimmd/badge/?version=latest

[pypi-link]: https://pypi.org/project/aimmd/
[pypi-badge]: https://img.shields.io/pypi/v/aimmd

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "aimmd",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": "Hendrik Jung <hendrik.jung@biophys.mpg.de>",
    "keywords": "science, MD, Molecular Dynamics, molecular-dynamics, Path Sampling, Transition Path Sampling, TPS, Machine Learning, ML, Artificial Intelligence, AI, committor, commitment probability, reaction coordinate, RC, high performance computing, HPC",
    "author": null,
    "author_email": "Hendrik Jung <hendrik.jung@biophys.mpg.de>",
    "download_url": "https://files.pythonhosted.org/packages/7d/7c/2805a6867d8f130a9d212cd986d2b02acea982dddab6aa60b632dc54ec37/aimmd-0.9.3.tar.gz",
    "platform": null,
    "description": "# aimmd\n\n[![codecov][codecov-badge]][codecov-link] [![Documentation Status][rtd-badge]][rtd-link] [![PyPI][pypi-badge]][pypi-link]\n\naimmd (AI for Molecular Mechanism Discovery) autonomously steers (a large number of) molecular dynamics simulations to efficiently sample and understand rare transition events.\n\n## Installation\n\nInstalling aimmd from [PyPi][pypi-link] is as easy as:\n\n```bash\npip install aimmd\n```\n\nFor more see the [documentation](rtd-link).\n\n## Documentation and Code Examples\n\nPlease see the [documentation](rt-link) for more information on aimmd and/or the jupyter notebooks in the `examples` folder for code examples.\n\n## Contributing\n\nAll contributions are appreciated! Please refer to the [documentation][rtd-link] for information.\n\n---\n<sub>This README.md is printed from 100% recycled electrons.</sub>\n\n[codecov-link]: https://app.codecov.io/gh/bio-phys/aimmd\n[codecov-badge]: https://img.shields.io/codecov/c/github/bio-phys/aimmd\n\n[rtd-link]: https://aimmd.readthedocs.io/en/latest/\n[rtd-badge]: https://readthedocs.org/projects/aimmd/badge/?version=latest\n\n[pypi-link]: https://pypi.org/project/aimmd/\n[pypi-badge]: https://img.shields.io/pypi/v/aimmd\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "aimmd (AI for Molecular Mechanism Discovery) autonomously steers (a large number of) molecular dynamics simulations to efficiently sampleand understand rare transition events.",
    "version": "0.9.3",
    "project_urls": {
        "Documentation": "https://aimmd.readthedocs.io/en/latest/",
        "Issues": "https://github.com/bio-phys/aimmd/issues",
        "Repository": "https://github.com/bio-phys/aimmd.git"
    },
    "split_keywords": [
        "science",
        " md",
        " molecular dynamics",
        " molecular-dynamics",
        " path sampling",
        " transition path sampling",
        " tps",
        " machine learning",
        " ml",
        " artificial intelligence",
        " ai",
        " committor",
        " commitment probability",
        " reaction coordinate",
        " rc",
        " high performance computing",
        " hpc"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "7d7c2805a6867d8f130a9d212cd986d2b02acea982dddab6aa60b632dc54ec37",
                "md5": "3613a20a2d3a70676f9f6d4134e1aff9",
                "sha256": "733c90caa4a1d0f2d6e3fccccb2eaf728e03beaafdc1f64c0de24b173625e83d"
            },
            "downloads": -1,
            "filename": "aimmd-0.9.3.tar.gz",
            "has_sig": false,
            "md5_digest": "3613a20a2d3a70676f9f6d4134e1aff9",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 268988,
            "upload_time": "2025-08-03T14:17:25",
            "upload_time_iso_8601": "2025-08-03T14:17:25.223448Z",
            "url": "https://files.pythonhosted.org/packages/7d/7c/2805a6867d8f130a9d212cd986d2b02acea982dddab6aa60b632dc54ec37/aimmd-0.9.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-03 14:17:25",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "bio-phys",
    "github_project": "aimmd",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": true,
    "lcname": "aimmd"
}
        
Elapsed time: 3.84209s