# aimmd
[![codecov][codecov-badge]][codecov-link] [![Documentation Status][rtd-badge]][rtd-link] [![PyPI][pypi-badge]][pypi-link]
aimmd (AI for Molecular Mechanism Discovery) autonomously steers (a large number of) molecular dynamics simulations to efficiently sample and understand rare transition events.
## Installation
Installing aimmd from [PyPi][pypi-link] is as easy as:
```bash
pip install aimmd
```
For more see the [documentation](rtd-link).
## Documentation and Code Examples
Please see the [documentation](rt-link) for more information on aimmd and/or the jupyter notebooks in the `examples` folder for code examples.
## Contributing
All contributions are appreciated! Please refer to the [documentation][rtd-link] for information.
---
<sub>This README.md is printed from 100% recycled electrons.</sub>
[codecov-link]: https://app.codecov.io/gh/bio-phys/aimmd
[codecov-badge]: https://img.shields.io/codecov/c/github/bio-phys/aimmd
[rtd-link]: https://aimmd.readthedocs.io/en/latest/
[rtd-badge]: https://readthedocs.org/projects/aimmd/badge/?version=latest
[pypi-link]: https://pypi.org/project/aimmd/
[pypi-badge]: https://img.shields.io/pypi/v/aimmd
Raw data
{
"_id": null,
"home_page": null,
"name": "aimmd",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": "Hendrik Jung <hendrik.jung@biophys.mpg.de>",
"keywords": "science, MD, Molecular Dynamics, molecular-dynamics, Path Sampling, Transition Path Sampling, TPS, Machine Learning, ML, Artificial Intelligence, AI, committor, commitment probability, reaction coordinate, RC, high performance computing, HPC",
"author": null,
"author_email": "Hendrik Jung <hendrik.jung@biophys.mpg.de>",
"download_url": "https://files.pythonhosted.org/packages/7d/7c/2805a6867d8f130a9d212cd986d2b02acea982dddab6aa60b632dc54ec37/aimmd-0.9.3.tar.gz",
"platform": null,
"description": "# aimmd\n\n[![codecov][codecov-badge]][codecov-link] [![Documentation Status][rtd-badge]][rtd-link] [![PyPI][pypi-badge]][pypi-link]\n\naimmd (AI for Molecular Mechanism Discovery) autonomously steers (a large number of) molecular dynamics simulations to efficiently sample and understand rare transition events.\n\n## Installation\n\nInstalling aimmd from [PyPi][pypi-link] is as easy as:\n\n```bash\npip install aimmd\n```\n\nFor more see the [documentation](rtd-link).\n\n## Documentation and Code Examples\n\nPlease see the [documentation](rt-link) for more information on aimmd and/or the jupyter notebooks in the `examples` folder for code examples.\n\n## Contributing\n\nAll contributions are appreciated! Please refer to the [documentation][rtd-link] for information.\n\n---\n<sub>This README.md is printed from 100% recycled electrons.</sub>\n\n[codecov-link]: https://app.codecov.io/gh/bio-phys/aimmd\n[codecov-badge]: https://img.shields.io/codecov/c/github/bio-phys/aimmd\n\n[rtd-link]: https://aimmd.readthedocs.io/en/latest/\n[rtd-badge]: https://readthedocs.org/projects/aimmd/badge/?version=latest\n\n[pypi-link]: https://pypi.org/project/aimmd/\n[pypi-badge]: https://img.shields.io/pypi/v/aimmd\n",
"bugtrack_url": null,
"license": null,
"summary": "aimmd (AI for Molecular Mechanism Discovery) autonomously steers (a large number of) molecular dynamics simulations to efficiently sampleand understand rare transition events.",
"version": "0.9.3",
"project_urls": {
"Documentation": "https://aimmd.readthedocs.io/en/latest/",
"Issues": "https://github.com/bio-phys/aimmd/issues",
"Repository": "https://github.com/bio-phys/aimmd.git"
},
"split_keywords": [
"science",
" md",
" molecular dynamics",
" molecular-dynamics",
" path sampling",
" transition path sampling",
" tps",
" machine learning",
" ml",
" artificial intelligence",
" ai",
" committor",
" commitment probability",
" reaction coordinate",
" rc",
" high performance computing",
" hpc"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "7d7c2805a6867d8f130a9d212cd986d2b02acea982dddab6aa60b632dc54ec37",
"md5": "3613a20a2d3a70676f9f6d4134e1aff9",
"sha256": "733c90caa4a1d0f2d6e3fccccb2eaf728e03beaafdc1f64c0de24b173625e83d"
},
"downloads": -1,
"filename": "aimmd-0.9.3.tar.gz",
"has_sig": false,
"md5_digest": "3613a20a2d3a70676f9f6d4134e1aff9",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 268988,
"upload_time": "2025-08-03T14:17:25",
"upload_time_iso_8601": "2025-08-03T14:17:25.223448Z",
"url": "https://files.pythonhosted.org/packages/7d/7c/2805a6867d8f130a9d212cd986d2b02acea982dddab6aa60b632dc54ec37/aimmd-0.9.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-03 14:17:25",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "bio-phys",
"github_project": "aimmd",
"travis_ci": false,
"coveralls": true,
"github_actions": true,
"lcname": "aimmd"
}