airflow-dagfactory


Nameairflow-dagfactory JSON
Version 0.19.2 PyPI version JSON
download
home_pagehttps://github.com/quydx/dag-factory
SummaryDynamically build Airflow DAGs from YAML files
upload_time2024-05-07 05:22:13
maintainerNone
docs_urlNone
authorQuy Do
requires_python>=3.10.0
licenseMIT
keywords airflow
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# airflow-dagfactory

[![Github Actions](https://github.com/ajbosco/dag-factory/workflows/build/badge.svg?branch=master&event=push)](https://github.com/ajbosco/dag-factory/actions?workflow=build)
[![Coverage](https://codecov.io/github/ajbosco/dag-factory/coverage.svg?branch=master)](https://codecov.io/github/ajbosco/dag-factory?branch=master)
[![PyPi](https://img.shields.io/pypi/v/dag-factory.svg)](https://pypi.org/project/dag-factory/)
[![Code Style](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/ambv/black)
[![Downloads](https://pepy.tech/badge/dag-factory)](https://pepy.tech/project/dag-factory)

*dag-factory* is a library for dynamically generating [Apache Airflow](https://github.com/apache/incubator-airflow) DAGs from YAML configuration files.
- [Installation](#installation)
- [Usage](#usage)
- [Benefits](#benefits)
- [Contributing](#contributing)
  
## Installation

To install *dag-factory* run `pip install airflow-dagfactory`. It requires Python 3.10.0+ and Apache Airflow 2.9.1+.

## Usage

After installing *airflow-dagfactory* in your Airflow environment, there are two steps to creating DAGs. First, we need to create a YAML configuration file. For example:

```yaml
example_dag1:
  default_args:
    owner: 'example_owner'
    start_date: 2018-01-01  # or '2 days'
    end_date: 2018-01-05
    retries: 1
    retry_delay_sec: 300
  schedule_interval: '0 3 * * *'
  concurrency: 1
  max_active_runs: 1
  dagrun_timeout_sec: 60
  default_view: 'tree'  # or 'graph', 'duration', 'gantt', 'landing_times'
  orientation: 'LR'  # or 'TB', 'RL', 'BT'
  description: 'this is an example dag!'
  on_success_callback_name: print_hello
  on_success_callback_file: /usr/local/airflow/dags/print_hello.py
  on_failure_callback_name: print_hello
  on_failure_callback_file: /usr/local/airflow/dags/print_hello.py
  tasks:
    task_1:
      operator: airflow.operators.bash_operator.BashOperator
      bash_command: 'echo 1'
    task_2:
      operator: airflow.operators.bash_operator.BashOperator
      bash_command: 'echo 2'
      dependencies: [task_1]
    task_3:
      operator: airflow.operators.bash_operator.BashOperator
      bash_command: 'echo 3'
      dependencies: [task_1]
```

Then in the DAGs folder in your Airflow environment you need to create a python file like this:

```python
from airflow import DAG
import airflow_dagfactory

dag_factory = airflow_dagfactory.DagFactory("/path/to/dags/config_file.yml")

dag_factory.clean_dags(globals())
dag_factory.generate_dags(globals())
```

And this DAG will be generated and ready to run in Airflow!

If you have several configuration files you can import them like this:

```python
# 'airflow' word is required for the dagbag to parse this file
from airflow_dagfactory import load_yaml_dags

load_yaml_dags(globals_dict=globals(), suffix=['dag.yaml'])
```

![screenshot](/img/example_dag.png)

## Notes

### HttpSensor (since 0.10.0)

The package `airflow.sensors.http_sensor` works with all supported versions of Airflow. In Airflow 2.0+, the new package name can be used in the operator value: `airflow.providers.http.sensors.http`

The following example shows `response_check` logic in a python file:

```yaml
task_2:
      operator: airflow.sensors.http_sensor.HttpSensor
      http_conn_id: 'test-http'
      method: 'GET'
      response_check_name: check_sensor
      response_check_file: /path/to/example1/http_conn.py
      dependencies: [task_1]
```

The `response_check` logic can also be provided as a lambda:

```yaml
task_2:
      operator: airflow.sensors.http_sensor.HttpSensor
      http_conn_id: 'test-http'
      method: 'GET'
      response_check_lambda: 'lambda response: "ok" in reponse.text'
      dependencies: [task_1]
```

## Benefits

* Construct DAGs without knowing Python
* Construct DAGs without learning Airflow primitives
* Avoid duplicative code
* Everyone loves YAML! ;)

## Contributing

Contributions are welcome! Just submit a Pull Request or Github Issue.


**Upload Pypi**  
`python setup.py sdist bdist_wheel `   
`python -m twine upload  dist/*  --verbose`

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/quydx/dag-factory",
    "name": "airflow-dagfactory",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10.0",
    "maintainer_email": null,
    "keywords": "airflow",
    "author": "Quy Do",
    "author_email": "quybulu@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/02/5c/29b6fed60955b69306bafe5d4e83b2d5eb426f402e22259bfc2cf2d1b0c9/airflow-dagfactory-0.19.2.tar.gz",
    "platform": null,
    "description": "\n# airflow-dagfactory\n\n[![Github Actions](https://github.com/ajbosco/dag-factory/workflows/build/badge.svg?branch=master&event=push)](https://github.com/ajbosco/dag-factory/actions?workflow=build)\n[![Coverage](https://codecov.io/github/ajbosco/dag-factory/coverage.svg?branch=master)](https://codecov.io/github/ajbosco/dag-factory?branch=master)\n[![PyPi](https://img.shields.io/pypi/v/dag-factory.svg)](https://pypi.org/project/dag-factory/)\n[![Code Style](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/ambv/black)\n[![Downloads](https://pepy.tech/badge/dag-factory)](https://pepy.tech/project/dag-factory)\n\n*dag-factory* is a library for dynamically generating [Apache Airflow](https://github.com/apache/incubator-airflow) DAGs from YAML configuration files.\n- [Installation](#installation)\n- [Usage](#usage)\n- [Benefits](#benefits)\n- [Contributing](#contributing)\n  \n## Installation\n\nTo install *dag-factory* run `pip install airflow-dagfactory`. It requires Python 3.10.0+ and Apache Airflow 2.9.1+.\n\n## Usage\n\nAfter installing *airflow-dagfactory* in your Airflow environment, there are two steps to creating DAGs. First, we need to create a YAML configuration file. For example:\n\n```yaml\nexample_dag1:\n  default_args:\n    owner: 'example_owner'\n    start_date: 2018-01-01  # or '2 days'\n    end_date: 2018-01-05\n    retries: 1\n    retry_delay_sec: 300\n  schedule_interval: '0 3 * * *'\n  concurrency: 1\n  max_active_runs: 1\n  dagrun_timeout_sec: 60\n  default_view: 'tree'  # or 'graph', 'duration', 'gantt', 'landing_times'\n  orientation: 'LR'  # or 'TB', 'RL', 'BT'\n  description: 'this is an example dag!'\n  on_success_callback_name: print_hello\n  on_success_callback_file: /usr/local/airflow/dags/print_hello.py\n  on_failure_callback_name: print_hello\n  on_failure_callback_file: /usr/local/airflow/dags/print_hello.py\n  tasks:\n    task_1:\n      operator: airflow.operators.bash_operator.BashOperator\n      bash_command: 'echo 1'\n    task_2:\n      operator: airflow.operators.bash_operator.BashOperator\n      bash_command: 'echo 2'\n      dependencies: [task_1]\n    task_3:\n      operator: airflow.operators.bash_operator.BashOperator\n      bash_command: 'echo 3'\n      dependencies: [task_1]\n```\n\nThen in the DAGs folder in your Airflow environment you need to create a python file like this:\n\n```python\nfrom airflow import DAG\nimport airflow_dagfactory\n\ndag_factory = airflow_dagfactory.DagFactory(\"/path/to/dags/config_file.yml\")\n\ndag_factory.clean_dags(globals())\ndag_factory.generate_dags(globals())\n```\n\nAnd this DAG will be generated and ready to run in Airflow!\n\nIf you have several configuration files you can import them like this:\n\n```python\n# 'airflow' word is required for the dagbag to parse this file\nfrom airflow_dagfactory import load_yaml_dags\n\nload_yaml_dags(globals_dict=globals(), suffix=['dag.yaml'])\n```\n\n![screenshot](/img/example_dag.png)\n\n## Notes\n\n### HttpSensor (since 0.10.0)\n\nThe package `airflow.sensors.http_sensor` works with all supported versions of Airflow. In Airflow 2.0+, the new package name can be used in the operator value: `airflow.providers.http.sensors.http`\n\nThe following example shows `response_check` logic in a python file:\n\n```yaml\ntask_2:\n      operator: airflow.sensors.http_sensor.HttpSensor\n      http_conn_id: 'test-http'\n      method: 'GET'\n      response_check_name: check_sensor\n      response_check_file: /path/to/example1/http_conn.py\n      dependencies: [task_1]\n```\n\nThe `response_check` logic can also be provided as a lambda:\n\n```yaml\ntask_2:\n      operator: airflow.sensors.http_sensor.HttpSensor\n      http_conn_id: 'test-http'\n      method: 'GET'\n      response_check_lambda: 'lambda response: \"ok\" in reponse.text'\n      dependencies: [task_1]\n```\n\n## Benefits\n\n* Construct DAGs without knowing Python\n* Construct DAGs without learning Airflow primitives\n* Avoid duplicative code\n* Everyone loves YAML! ;)\n\n## Contributing\n\nContributions are welcome! Just submit a Pull Request or Github Issue.\n\n\n**Upload Pypi**  \n`python setup.py sdist bdist_wheel `   \n`python -m twine upload  dist/*  --verbose`\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Dynamically build Airflow DAGs from YAML files",
    "version": "0.19.2",
    "project_urls": {
        "Homepage": "https://github.com/quydx/dag-factory"
    },
    "split_keywords": [
        "airflow"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "35cc35c4ee1a23014c80e8271e7f618bbd58cacebbd39b66d571c314f60af816",
                "md5": "cb2a608bb7f0065147bed74dafebd486",
                "sha256": "7a14b1fea32bb48f7968019bdaeb78aa64fba33be5d069cc7bd22d4d48695c65"
            },
            "downloads": -1,
            "filename": "airflow_dagfactory-0.19.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "cb2a608bb7f0065147bed74dafebd486",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10.0",
            "size": 17284,
            "upload_time": "2024-05-07T05:22:10",
            "upload_time_iso_8601": "2024-05-07T05:22:10.520567Z",
            "url": "https://files.pythonhosted.org/packages/35/cc/35c4ee1a23014c80e8271e7f618bbd58cacebbd39b66d571c314f60af816/airflow_dagfactory-0.19.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "025c29b6fed60955b69306bafe5d4e83b2d5eb426f402e22259bfc2cf2d1b0c9",
                "md5": "3ab60489f946ccc23fa145b32271f8d1",
                "sha256": "aa728638f63abb97dae03777384bd5c5249c95ab0c95118647ad6362d8a5281f"
            },
            "downloads": -1,
            "filename": "airflow-dagfactory-0.19.2.tar.gz",
            "has_sig": false,
            "md5_digest": "3ab60489f946ccc23fa145b32271f8d1",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10.0",
            "size": 18318,
            "upload_time": "2024-05-07T05:22:13",
            "upload_time_iso_8601": "2024-05-07T05:22:13.416935Z",
            "url": "https://files.pythonhosted.org/packages/02/5c/29b6fed60955b69306bafe5d4e83b2d5eb426f402e22259bfc2cf2d1b0c9/airflow-dagfactory-0.19.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-05-07 05:22:13",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "quydx",
    "github_project": "dag-factory",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "tox": true,
    "lcname": "airflow-dagfactory"
}
        
Elapsed time: 3.82171s