# alchemlyb: the simple alchemistry library
[![Zenodo DOI](https://zenodo.org/badge/68669096.svg)](https://zenodo.org/badge/latestdoi/68669096) [![Documentation](https://readthedocs.org/projects/alchemlyb/badge/?version=latest)](http://alchemlyb.readthedocs.io/en/latest/) [![Build Status](https://github.com/alchemistry/alchemlyb/actions/workflows/ci.yaml/badge.svg?branch=master)](https://github.com/alchemistry/alchemlyb/actions/workflows/ci.yaml) [![Code coverage](https://codecov.io/gh/alchemistry/alchemlyb/branch/master/graph/badge.svg)](https://codecov.io/gh/alchemistry/alchemlyb) [![anaconda package](https://anaconda.org/conda-forge/alchemlyb/badges/version.svg)](https://anaconda.org/conda-forge/alchemlyb)
**alchemlyb** makes alchemical free energy calculations easier to do by leveraging the full power and flexibility of the PyData stack. It includes:
1. Parsers for extracting raw data from output files of common molecular dynamics engines such as [GROMACS](http://www.gromacs.org/), [AMBER](http://ambermd.org/), [NAMD](http://www.ks.uiuc.edu/Research/namd/) and [other simulation codes](https://alchemlyb.readthedocs.io/en/latest/parsing.html).
2. Subsamplers for obtaining uncorrelated samples from timeseries data (including extracting independent, equilibrated samples [Chodera2016](#chodera2016) as implemented in the [pymbar](http://pymbar.readthedocs.io/) package).
3. Estimators for obtaining free energies directly from this data, using best-practices approaches for multistate Bennett acceptance ratio (MBAR) [Shirts2008](#shirts2008) and BAR (from [pymbar](http://pymbar.readthedocs.io/)) and thermodynamic integration (TI).
## Documentation
The documentation is hosted on [Read the Docs](https://alchemlyb.readthedocs.io/en/latest/).
## Installation
**Install** via `pip` from [PyPi (alchemlyb)](https://pypi.org/project/alchemlyb):
```bash
pip install alchemlyb
```
or as a `conda` package from the [conda-forge (alchemlyb)](https://anaconda.org/conda-forge/alchemlyb) channel:
```bash
conda install -c conda-forge alchemlyb
```
**Update** with `pip`:
```bash
pip install --update alchemlyb
```
or with `conda` run:
```bash
conda update -c conda-forge alchemlyb
```
to get the latest released version.
## Getting involved
Contributions of all kinds are very welcome.
If you have questions or want to discuss alchemlyb please post in the [alchemlyb Discussions](https://github.com/alchemistry/alchemlyb/discussions).
If you have bug reports or feature requests then please get in touch with us through the [Issue Tracker](https://github.com/alchemistry/alchemlyb/issues).
We also welcome code contributions: have a look at our [Developer Guide](https://github.com/alchemistry/alchemlyb/wiki/Developer-Guide). Open an issue with the proposed fix or change in the [Issue Tracker](https://github.com/alchemistry/alchemlyb/issues) and submit a pull request against the [alchemistry/alchemlyb](https://github.com/alchemistry/alchemlyb) GitHub repository.
## References
- <a name="shirts2008"></a> Shirts, M.R., and Chodera, J.D. (2008). Statistically optimal analysis of samples from multiple equilibrium states. The Journal of Chemical Physics 129, 124105.
- <a name="chodera2016"></a> Chodera, J.D. (2016). A Simple Method for Automated Equilibration Detection in Molecular Simulations. Journal of Chemical Theory and Computation 12, 1799–1805.
Raw data
{
"_id": null,
"home_page": null,
"name": "alchemlyb",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": "Zhiyi Wu <william@zhiyiwu.me>, Oliver Beckstein <orbeckst@gmail.com>",
"keywords": "free energy, MBAR, thermodynamic integration, free energy perturbation, FEP, alchemistry, analysis, GROMACS, NAMD, AMBER, molecular dynamics",
"author": null,
"author_email": "Zhiyi Wu <william@zhiyiwu.me>, David Dotson <dotsdl@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/12/38/69d78487649b81931fe9c12383e1c1a7cdc8fdf06f82237dc516df1ebe03/alchemlyb-2.4.1.tar.gz",
"platform": null,
"description": "# alchemlyb: the simple alchemistry library\n\n[![Zenodo DOI](https://zenodo.org/badge/68669096.svg)](https://zenodo.org/badge/latestdoi/68669096) [![Documentation](https://readthedocs.org/projects/alchemlyb/badge/?version=latest)](http://alchemlyb.readthedocs.io/en/latest/) [![Build Status](https://github.com/alchemistry/alchemlyb/actions/workflows/ci.yaml/badge.svg?branch=master)](https://github.com/alchemistry/alchemlyb/actions/workflows/ci.yaml) [![Code coverage](https://codecov.io/gh/alchemistry/alchemlyb/branch/master/graph/badge.svg)](https://codecov.io/gh/alchemistry/alchemlyb) [![anaconda package](https://anaconda.org/conda-forge/alchemlyb/badges/version.svg)](https://anaconda.org/conda-forge/alchemlyb)\n\n**alchemlyb** makes alchemical free energy calculations easier to do by leveraging the full power and flexibility of the PyData stack. It includes:\n\n1. Parsers for extracting raw data from output files of common molecular dynamics engines such as [GROMACS](http://www.gromacs.org/), [AMBER](http://ambermd.org/), [NAMD](http://www.ks.uiuc.edu/Research/namd/) and [other simulation codes](https://alchemlyb.readthedocs.io/en/latest/parsing.html).\n\n2. Subsamplers for obtaining uncorrelated samples from timeseries data (including extracting independent, equilibrated samples [Chodera2016](#chodera2016) as implemented in the [pymbar](http://pymbar.readthedocs.io/) package).\n\n3. Estimators for obtaining free energies directly from this data, using best-practices approaches for multistate Bennett acceptance ratio (MBAR) [Shirts2008](#shirts2008) and BAR (from [pymbar](http://pymbar.readthedocs.io/)) and thermodynamic integration (TI).\n\n## Documentation\n\nThe documentation is hosted on [Read the Docs](https://alchemlyb.readthedocs.io/en/latest/).\n\n## Installation\n\n**Install** via `pip` from [PyPi (alchemlyb)](https://pypi.org/project/alchemlyb):\n\n```bash\npip install alchemlyb\n```\n\nor as a `conda` package from the [conda-forge (alchemlyb)](https://anaconda.org/conda-forge/alchemlyb) channel:\n\n```bash\nconda install -c conda-forge alchemlyb\n```\n\n**Update** with `pip`:\n\n```bash\npip install --update alchemlyb\n```\n\nor with `conda` run:\n\n```bash\nconda update -c conda-forge alchemlyb\n```\n\nto get the latest released version.\n\n## Getting involved\n\nContributions of all kinds are very welcome.\n\nIf you have questions or want to discuss alchemlyb please post in the [alchemlyb Discussions](https://github.com/alchemistry/alchemlyb/discussions).\n\nIf you have bug reports or feature requests then please get in touch with us through the [Issue Tracker](https://github.com/alchemistry/alchemlyb/issues).\n\nWe also welcome code contributions: have a look at our [Developer Guide](https://github.com/alchemistry/alchemlyb/wiki/Developer-Guide). Open an issue with the proposed fix or change in the [Issue Tracker](https://github.com/alchemistry/alchemlyb/issues) and submit a pull request against the [alchemistry/alchemlyb](https://github.com/alchemistry/alchemlyb) GitHub repository.\n\n## References\n\n- <a name=\"shirts2008\"></a> Shirts, M.R., and Chodera, J.D. (2008). Statistically optimal analysis of samples from multiple equilibrium states. The Journal of Chemical Physics 129, 124105.\n- <a name=\"chodera2016\"></a> Chodera, J.D. (2016). A Simple Method for Automated Equilibration Detection in Molecular Simulations. Journal of Chemical Theory and Computation 12, 1799\u20131805.\n",
"bugtrack_url": null,
"license": "BSD",
"summary": "the simple alchemistry library",
"version": "2.4.1",
"project_urls": {
"Changelog": "https://github.com/alchemistry/alchemlyb/blob/master/CHANGES",
"Discussions": "https://github.com/alchemistry/alchemlyb/discussions",
"Documentation": "https://alchemlyb.readthedocs.io/",
"Homepage": "https://github.com/alchemistry/alchemlyb",
"Issues": "https://github.com/alchemistry/alchemlyb/issues",
"Repository": "https://github.com/alchemistry/alchemlyb"
},
"split_keywords": [
"free energy",
" mbar",
" thermodynamic integration",
" free energy perturbation",
" fep",
" alchemistry",
" analysis",
" gromacs",
" namd",
" amber",
" molecular dynamics"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "6255c29cd35001263c4185236736b5d1f336a61274478b839ee686813c24a565",
"md5": "155a9425beac839dcaa36e6ca43c9db1",
"sha256": "32444f109a2695c6b5153e713f34f6d43babb83c24ce70869fff052dd845e2b7"
},
"downloads": -1,
"filename": "alchemlyb-2.4.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "155a9425beac839dcaa36e6ca43c9db1",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 99621,
"upload_time": "2024-09-19T18:16:41",
"upload_time_iso_8601": "2024-09-19T18:16:41.231420Z",
"url": "https://files.pythonhosted.org/packages/62/55/c29cd35001263c4185236736b5d1f336a61274478b839ee686813c24a565/alchemlyb-2.4.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "123869d78487649b81931fe9c12383e1c1a7cdc8fdf06f82237dc516df1ebe03",
"md5": "71333e4370fb9babde5f69d8a3e8e131",
"sha256": "d360fca39d0e6a9d85744413be4b1794dfd448c5558a145e975f71ce7a8da48b"
},
"downloads": -1,
"filename": "alchemlyb-2.4.1.tar.gz",
"has_sig": false,
"md5_digest": "71333e4370fb9babde5f69d8a3e8e131",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 79553,
"upload_time": "2024-09-19T18:16:42",
"upload_time_iso_8601": "2024-09-19T18:16:42.248683Z",
"url": "https://files.pythonhosted.org/packages/12/38/69d78487649b81931fe9c12383e1c1a7cdc8fdf06f82237dc516df1ebe03/alchemlyb-2.4.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-19 18:16:42",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "alchemistry",
"github_project": "alchemlyb",
"travis_ci": false,
"coveralls": true,
"github_actions": true,
"lcname": "alchemlyb"
}