aldsim


Namealdsim JSON
Version 0.0.2 PyPI version JSON
download
home_pagehttps://github.com/anglyan/ald.git
SummarySimple models for atomic layer deposition
upload_time2024-06-05 00:27:22
maintainerNone
docs_urlNone
authorAngel Yanguas-Gil
requires_python>=3.6
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # aldsim

Simple models for thin film growth using atomic layer deposition


## Motivation

Atomic layer deposition is a thin film growth technique that
relies on self-limited surface kinetics. It plays a key role
in areas such as microelectronics, and it is applied for energy,
energy storage, catalysis, and decarbonization applications.

`aldsim` implements a series of models to help explore ALD in 
various contexts and reactor configurations.

It has grown from a collection of papers that we have published over
the past 10 years.

## Status

`aldsim` is still in development. Over the next few months it will
be expanded to incorporate a variety of models. Please check aldsim's
documentation in [readthedocs](https://aldsim.readthedocs.io/en/latest/).


## Quick install

Through pypi:

```
pip install aldsim
```

## Usage

## Acknowledgements

Argonne's Laboratory Directed Research and Development program

## Copyright and license

Copyright © 2024, UChicago Argonne, LLC

`aldsim` is distributed under the terms of BSD License. 

Argonne Patent & Intellectual Property File Number: SF-24-041



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/anglyan/ald.git",
    "name": "aldsim",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": null,
    "author": "Angel Yanguas-Gil",
    "author_email": "angel.yanguas@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/01/94/af406670c6ff91eebc02b3ddc60b8330ea538308dcee3b0b737b5f69acae/aldsim-0.0.2.tar.gz",
    "platform": null,
    "description": "# aldsim\n\nSimple models for thin film growth using atomic layer deposition\n\n\n## Motivation\n\nAtomic layer deposition is a thin film growth technique that\nrelies on self-limited surface kinetics. It plays a key role\nin areas such as microelectronics, and it is applied for energy,\nenergy storage, catalysis, and decarbonization applications.\n\n`aldsim` implements a series of models to help explore ALD in \nvarious contexts and reactor configurations.\n\nIt has grown from a collection of papers that we have published over\nthe past 10 years.\n\n## Status\n\n`aldsim` is still in development. Over the next few months it will\nbe expanded to incorporate a variety of models. Please check aldsim's\ndocumentation in [readthedocs](https://aldsim.readthedocs.io/en/latest/).\n\n\n## Quick install\n\nThrough pypi:\n\n```\npip install aldsim\n```\n\n## Usage\n\n## Acknowledgements\n\nArgonne's Laboratory Directed Research and Development program\n\n## Copyright and license\n\nCopyright \u00a9 2024, UChicago Argonne, LLC\n\n`aldsim` is distributed under the terms of BSD License. \n\nArgonne Patent & Intellectual Property File Number: SF-24-041\n\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Simple models for atomic layer deposition",
    "version": "0.0.2",
    "project_urls": {
        "Bug Tracker": "https://github.com/anglyan/ald/issues",
        "Homepage": "https://github.com/anglyan/ald.git"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3632df0bc6878217a8717579da2918a60b8088726712596504220846eb289175",
                "md5": "86d494ea8f588a9fbb0a87af977cd15b",
                "sha256": "28ec2269af12ba225683d0c258e26e7029bc7fa9cb0c21a237f4653f0216a12f"
            },
            "downloads": -1,
            "filename": "aldsim-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "86d494ea8f588a9fbb0a87af977cd15b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 6564,
            "upload_time": "2024-06-05T00:27:21",
            "upload_time_iso_8601": "2024-06-05T00:27:21.456015Z",
            "url": "https://files.pythonhosted.org/packages/36/32/df0bc6878217a8717579da2918a60b8088726712596504220846eb289175/aldsim-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0194af406670c6ff91eebc02b3ddc60b8330ea538308dcee3b0b737b5f69acae",
                "md5": "026722ad42f10f9cf1b52b115a5ad567",
                "sha256": "9b01498f5028d0d791a938473551b6c7de84672e2d492faa6cb5c31e0f4d689d"
            },
            "downloads": -1,
            "filename": "aldsim-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "026722ad42f10f9cf1b52b115a5ad567",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 6716,
            "upload_time": "2024-06-05T00:27:22",
            "upload_time_iso_8601": "2024-06-05T00:27:22.338091Z",
            "url": "https://files.pythonhosted.org/packages/01/94/af406670c6ff91eebc02b3ddc60b8330ea538308dcee3b0b737b5f69acae/aldsim-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-05 00:27:22",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "anglyan",
    "github_project": "ald",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "aldsim"
}
        
Elapsed time: 0.25114s