alea-llm-client


Namealea-llm-client JSON
Version 0.2.3 PyPI version JSON
download
home_pageNone
SummaryALEA LLM client abstraction library for Python
upload_time2025-08-20 19:45:00
maintainerNone
docs_urlNone
authorNone
requires_python<4.0.0,>=3.9
licenseNone
keywords alea api client llm
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ALEA LLM Client

[![PyPI version](https://badge.fury.io/py/alea-llm-client.svg)](https://badge.fury.io/py/alea-llm-client)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Python Versions](https://img.shields.io/pypi/pyversions/alea-llm-client.svg)](https://pypi.org/project/alea-llm-client/)

This is a simple, two-dependency (`httpx`, `pydantic`) LLM client for ~OpenAI APIs like:
 * OpenAI (GPT-4, GPT-5, o-series)
 * Anthropic (Claude 3.5, Claude 4)
 * Google (Vertex AI, Gemini API)
 * xAI (Grok)
 * VLLM

### Supported Patterns

It provides the following patterns for all endpoints:
 * `complete` and `complete_async` -> str via `ModelResponse`
 * `chat` and `chat_async` -> str via `ModelResponse`
 * `json` and `json_async` -> dict via `JSONModelResponse`
 * `pydantic` and `pydantic_async` -> pydantic models
 * `responses` and `responses_async` -> structured output with tool use, grammar constraints, and reasoning modes

### Model Registry & Capabilities

Version 0.2.1 introduces a comprehensive model registry with detailed capability tracking for 97 real models sourced from live API calls:
- **OpenAI**: 72 models (GPT-4, GPT-5, o-series, computer-use, realtime, audio models)
- **Anthropic**: 9 models (Claude 3.5, Claude 4, various tiers and dates)
- **Google**: 7 models (Gemini 1.5, Gemini 2.0, flash and pro variants)
- **xAI**: 9 models (Grok 2, Grok 3, with vision support)

```python
from alea_llm_client.llms import (
    get_models_with_context_window_gte,
    filter_models,
    compare_models,
    get_model_details
)

# Find models with large context windows
large_context = get_models_with_context_window_gte(1000000)

# Filter by multiple criteria
efficient = filter_models(
    min_context=100000,
    capabilities=["tools", "vision"],
    tiers=["mini", "flash"],  # Can also use ModelTier.MINI, ModelTier.FLASH
    exclude_deprecated=True
)

# Compare specific models
comparison = compare_models(["gpt-5", "claude-sonnet-4-20250514", "gemini-2.5-pro"])
```

#### Dynamic Model Configuration
The model registry is powered by a dynamic JSON configuration system that automatically updates from live API calls:
- **Real API Data**: All 97 models are discovered and configured from actual provider APIs
- **Automatic Updates**: Model configurations stay current with provider releases
- **Capability Detection**: Supports tools, vision, computer use, thinking modes, and more
- **Fallback System**: Maintains backward compatibility with Python constants

### Advanced Features

#### Grammar Constraints (GPT-5)
```python
from alea_llm_client import OpenAIModel

model = OpenAIModel(model="gpt-5")
response = model.responses(
    input="Answer yes or no: Is 2+2=4?",
    grammar='start: "yes" | "no"',
    grammar_syntax="lark"
)
```

#### Thinking Mode (Claude 4+)
```python
from alea_llm_client import AnthropicModel

model = AnthropicModel(model="claude-sonnet-4-20250514")
response = model.chat(
    messages=[{"role": "user", "content": "Solve this complex problem..."}],
    thinking={"enabled": True, "budget_tokens": 2000}
)
print(response.thinking)  # Access thinking content
```

#### Reasoning Tokens (o-series)
```python
from alea_llm_client import OpenAIModel

model = OpenAIModel(model="o3-mini")
response = model.chat(
    messages=[{"role": "user", "content": "Think through this step by step..."}],
    max_completion_tokens=50000
)
print(f"Used {response.reasoning_tokens} reasoning tokens")
```

### Response Caching  

**Result caching is disabled by default for predictable API client behavior.**

To enable caching for better performance, you can either:
  * set `ignore_cache=False` for each method call (`complete`, `chat`, `json`, `pydantic`)
  * set `ignore_cache=False` as a kwarg at model construction

```python
# Enable caching at model level
model = OpenAIModel(ignore_cache=False)

# Enable caching for specific calls
response = model.chat("Hello", ignore_cache=False)
```

Cached objects are stored in `~/.alea/cache/{provider}/{endpoint_model_hash}/{call_hash}.json`
in compressed `.json.gz` format.  You can delete these files to clear the cache.

### Authentication

Authentication is handled in the following priority order:
 * an `api_key` provided at model construction
 * a standard environment variable (e.g., `ANTHROPIC_API_KEY` or `OPENAI_API_KEY`)
 * a key stored in `~/.alea/keys/{provider}` (e.g., `openai`, `anthropic`, `gemini`, `grok`)

### Streaming

Given the research focus of this library, streaming generation is not supported.  However,
you can directly access the `httpx` objects on `.client` and `.async_client` to stream responses
directly if you prefer.

## Installation

```bash
pip install alea-llm-client
```

## Examples


### Basic JSON Example

```python
from alea_llm_client import VLLMModel

if __name__ == "__main__":
    model = VLLMModel(
        endpoint="http://my.vllm.server:8000",
        model="meta-llama/Meta-Llama-3.1-8B-Instruct"
    )

    messages = [
        {
            "role": "user",
            "content": "Give me a JSON object with keys 'name' and 'age' for a person named Alice who is 30 years old.",
        },
    ]

    print(model.json(messages=messages, system="Respond in JSON.").data)

# Output: {'name': 'Alice', 'age': 30}
```

### Basic Completion Example with KL3M

```python
from alea_llm_client import VLLMModel

if __name__ == "__main__":
    model = VLLMModel(
        model="kl3m-1.7b", ignore_cache=True
    )

    prompt = "My name is "
    print(model.complete(prompt=prompt, temperature=0.5).text)

# Output: Dr. Hermann Kamenzi, and
```

### Pydantic Example
```python
from pydantic import BaseModel
from alea_llm_client import AnthropicModel, format_prompt, format_instructions

class Person(BaseModel):
    name: str
    age: int

if __name__ == "__main__":
    model = AnthropicModel(ignore_cache=True)

    instructions = [
        "Provide one random record based on the SCHEMA below.",
    ]
    prompt = format_prompt(
        {
            "instructions": format_instructions(instructions),
            "schema": Person,
        }
    )

    person = model.pydantic(prompt, system="Respond in JSON.", pydantic_model=Person)
    print(person)

# Output: name='Olivia Chen' age=29
```


## Design

### Class Inheritance

```mermaid
classDiagram
    BaseAIModel <|-- OpenAICompatibleModel
    OpenAICompatibleModel <|-- AnthropicModel
    OpenAICompatibleModel <|-- OpenAIModel
    OpenAICompatibleModel <|-- VLLMModel
    OpenAICompatibleModel <|-- GrokModel
    BaseAIModel <|-- GoogleModel

    class BaseAIModel {
        <<abstract>>
    }
    class OpenAICompatibleModel
    class AnthropicModel
    class OpenAIModel
    class VLLMModel
    class GrokModel
    class GoogleModel
```

### Example Call Flow

```mermaid
sequenceDiagram
    participant Client
    participant BaseAIModel
    participant OpenAICompatibleModel
    participant SpecificModel
    participant API

    Client->>BaseAIModel: json()
    BaseAIModel->>BaseAIModel: _retry_wrapper()
    BaseAIModel->>OpenAICompatibleModel: _json()
    OpenAICompatibleModel->>OpenAICompatibleModel: format()
    OpenAICompatibleModel->>OpenAICompatibleModel: _make_request()
    OpenAICompatibleModel->>API: HTTP POST
    API-->>OpenAICompatibleModel: Response
    OpenAICompatibleModel->>OpenAICompatibleModel: _handle_json_response()
    OpenAICompatibleModel-->>BaseAIModel: JSONModelResponse
    BaseAIModel-->>Client: JSONModelResponse
```

## Testing

The library includes comprehensive test coverage with intelligent rate limiting for all 97 models:

### Test Features
* **All model providers**: OpenAI (72 models), Anthropic (9 models), Google (7 models), xAI (9 models), VLLM
* **Complete API coverage**: Sync/async operations, JSON/Pydantic responses, error handling, retry logic
* **Real API integration**: Tests use actual provider APIs with intelligent rate limiting
* **Cache functionality**: Response caching with configurable ignore options

### Rate Limiting Configuration
Prevent API quota exhaustion with configurable delays:
```bash
# Google API (most restrictive)
export GOOGLE_API_DELAY=2.0        # Seconds between calls (default: 2.0)
export GOOGLE_API_CONCURRENT=1     # Max concurrent calls (default: 1)

# Anthropic API  
export ANTHROPIC_API_DELAY=0.5     # Seconds between calls (default: 0.5)
export ANTHROPIC_API_CONCURRENT=3  # Max concurrent calls (default: 3)

# OpenAI API
export OPENAI_API_DELAY=0.2        # Seconds between calls (default: 0.2)
export OPENAI_API_CONCURRENT=5     # Max concurrent calls (default: 5)

# xAI/Grok API
export XAI_API_DELAY=1.0           # Seconds between calls (default: 1.0)
export XAI_API_CONCURRENT=2        # Max concurrent calls (default: 2)

# VLLM (local servers)
export VLLM_API_DELAY=0.1          # Seconds between calls (default: 0.1)
export VLLM_API_CONCURRENT=10      # Max concurrent calls (default: 10)
```

### Running Tests
```bash
# Run all tests with rate limiting
uv run pytest tests/

# Run specific provider tests
uv run pytest tests/test_openai.py
uv run pytest tests/test_anthropic.py

# Custom VLLM server testing
export VLLM_ENDPOINT="http://192.168.1.118:8080/"
export VLLM_MODEL="Qwen/Qwen3-4B-Instruct-2507"
uv run pytest tests/test_vllm.py
```

## Migration Guide

### Upgrading from v0.1.x to v0.2.x

**⚠️ Important Changes:**

1. **Google Model Key Path**: The Google API key path changed from `~/.alea/keys/google` to `~/.alea/keys/gemini`
2. **Model Registry**: Now uses dynamic JSON configuration with 97 real models (was 50+ theoretical models)
3. **Test Configuration**: Added rate limiting system - tests may run slower but prevent API quota exhaustion

**Migration Steps:**
```bash
# 1. Update Google API key path if you use Google models
mv ~/.alea/keys/google ~/.alea/keys/gemini  # If the file exists

# 2. Update to latest version
pip install --upgrade alea-llm-client

# 3. No code changes required - all existing APIs remain compatible
```

**What's New in v0.2.x:**
- **97 Real Models**: All models now sourced from live API calls (vs theoretical documentation)
- **Enhanced Capabilities**: Tool use, vision, computer use, thinking modes, reasoning tokens
- **Better Testing**: Intelligent rate limiting prevents API quota issues
- **Dynamic Configuration**: Model registry updates automatically from provider APIs

**Breaking Changes (minimal impact):**
- **Google key path**: `~/.alea/keys/google` → `~/.alea/keys/gemini`
- **ModelResponse.text**: Changed from `Optional[str]` to `str` (empty string default)
- **Test timing**: Rate limiting may slow test execution (configurable via environment variables)

## License

The ALEA LLM client is released under the MIT License. See the [LICENSE](LICENSE) file for details.

## Support

If you encounter any issues or have questions about using the ALEA LLM client library, please [open an issue](https://github.com/alea-institute/alea-llm-client/issues) on GitHub.

## Learn More

To learn more about ALEA and its software and research projects like KL3M and leeky, visit the [ALEA website](https://aleainstitute.ai/).

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "alea-llm-client",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0.0,>=3.9",
    "maintainer_email": null,
    "keywords": "alea, api, client, llm",
    "author": null,
    "author_email": "ALEA Institute <hello@aleainstitute.ai>",
    "download_url": "https://files.pythonhosted.org/packages/00/27/17f285226d1dd68d19403e0d178d923a5e39dfc258b3c344bcc1eb44ade3/alea_llm_client-0.2.3.tar.gz",
    "platform": null,
    "description": "# ALEA LLM Client\n\n[![PyPI version](https://badge.fury.io/py/alea-llm-client.svg)](https://badge.fury.io/py/alea-llm-client)\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n[![Python Versions](https://img.shields.io/pypi/pyversions/alea-llm-client.svg)](https://pypi.org/project/alea-llm-client/)\n\nThis is a simple, two-dependency (`httpx`, `pydantic`) LLM client for ~OpenAI APIs like:\n * OpenAI (GPT-4, GPT-5, o-series)\n * Anthropic (Claude 3.5, Claude 4)\n * Google (Vertex AI, Gemini API)\n * xAI (Grok)\n * VLLM\n\n### Supported Patterns\n\nIt provides the following patterns for all endpoints:\n * `complete` and `complete_async` -> str via `ModelResponse`\n * `chat` and `chat_async` -> str via `ModelResponse`\n * `json` and `json_async` -> dict via `JSONModelResponse`\n * `pydantic` and `pydantic_async` -> pydantic models\n * `responses` and `responses_async` -> structured output with tool use, grammar constraints, and reasoning modes\n\n### Model Registry & Capabilities\n\nVersion 0.2.1 introduces a comprehensive model registry with detailed capability tracking for 97 real models sourced from live API calls:\n- **OpenAI**: 72 models (GPT-4, GPT-5, o-series, computer-use, realtime, audio models)\n- **Anthropic**: 9 models (Claude 3.5, Claude 4, various tiers and dates)\n- **Google**: 7 models (Gemini 1.5, Gemini 2.0, flash and pro variants)\n- **xAI**: 9 models (Grok 2, Grok 3, with vision support)\n\n```python\nfrom alea_llm_client.llms import (\n    get_models_with_context_window_gte,\n    filter_models,\n    compare_models,\n    get_model_details\n)\n\n# Find models with large context windows\nlarge_context = get_models_with_context_window_gte(1000000)\n\n# Filter by multiple criteria\nefficient = filter_models(\n    min_context=100000,\n    capabilities=[\"tools\", \"vision\"],\n    tiers=[\"mini\", \"flash\"],  # Can also use ModelTier.MINI, ModelTier.FLASH\n    exclude_deprecated=True\n)\n\n# Compare specific models\ncomparison = compare_models([\"gpt-5\", \"claude-sonnet-4-20250514\", \"gemini-2.5-pro\"])\n```\n\n#### Dynamic Model Configuration\nThe model registry is powered by a dynamic JSON configuration system that automatically updates from live API calls:\n- **Real API Data**: All 97 models are discovered and configured from actual provider APIs\n- **Automatic Updates**: Model configurations stay current with provider releases\n- **Capability Detection**: Supports tools, vision, computer use, thinking modes, and more\n- **Fallback System**: Maintains backward compatibility with Python constants\n\n### Advanced Features\n\n#### Grammar Constraints (GPT-5)\n```python\nfrom alea_llm_client import OpenAIModel\n\nmodel = OpenAIModel(model=\"gpt-5\")\nresponse = model.responses(\n    input=\"Answer yes or no: Is 2+2=4?\",\n    grammar='start: \"yes\" | \"no\"',\n    grammar_syntax=\"lark\"\n)\n```\n\n#### Thinking Mode (Claude 4+)\n```python\nfrom alea_llm_client import AnthropicModel\n\nmodel = AnthropicModel(model=\"claude-sonnet-4-20250514\")\nresponse = model.chat(\n    messages=[{\"role\": \"user\", \"content\": \"Solve this complex problem...\"}],\n    thinking={\"enabled\": True, \"budget_tokens\": 2000}\n)\nprint(response.thinking)  # Access thinking content\n```\n\n#### Reasoning Tokens (o-series)\n```python\nfrom alea_llm_client import OpenAIModel\n\nmodel = OpenAIModel(model=\"o3-mini\")\nresponse = model.chat(\n    messages=[{\"role\": \"user\", \"content\": \"Think through this step by step...\"}],\n    max_completion_tokens=50000\n)\nprint(f\"Used {response.reasoning_tokens} reasoning tokens\")\n```\n\n### Response Caching  \n\n**Result caching is disabled by default for predictable API client behavior.**\n\nTo enable caching for better performance, you can either:\n  * set `ignore_cache=False` for each method call (`complete`, `chat`, `json`, `pydantic`)\n  * set `ignore_cache=False` as a kwarg at model construction\n\n```python\n# Enable caching at model level\nmodel = OpenAIModel(ignore_cache=False)\n\n# Enable caching for specific calls\nresponse = model.chat(\"Hello\", ignore_cache=False)\n```\n\nCached objects are stored in `~/.alea/cache/{provider}/{endpoint_model_hash}/{call_hash}.json`\nin compressed `.json.gz` format.  You can delete these files to clear the cache.\n\n### Authentication\n\nAuthentication is handled in the following priority order:\n * an `api_key` provided at model construction\n * a standard environment variable (e.g., `ANTHROPIC_API_KEY` or `OPENAI_API_KEY`)\n * a key stored in `~/.alea/keys/{provider}` (e.g., `openai`, `anthropic`, `gemini`, `grok`)\n\n### Streaming\n\nGiven the research focus of this library, streaming generation is not supported.  However,\nyou can directly access the `httpx` objects on `.client` and `.async_client` to stream responses\ndirectly if you prefer.\n\n## Installation\n\n```bash\npip install alea-llm-client\n```\n\n## Examples\n\n\n### Basic JSON Example\n\n```python\nfrom alea_llm_client import VLLMModel\n\nif __name__ == \"__main__\":\n    model = VLLMModel(\n        endpoint=\"http://my.vllm.server:8000\",\n        model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\"\n    )\n\n    messages = [\n        {\n            \"role\": \"user\",\n            \"content\": \"Give me a JSON object with keys 'name' and 'age' for a person named Alice who is 30 years old.\",\n        },\n    ]\n\n    print(model.json(messages=messages, system=\"Respond in JSON.\").data)\n\n# Output: {'name': 'Alice', 'age': 30}\n```\n\n### Basic Completion Example with KL3M\n\n```python\nfrom alea_llm_client import VLLMModel\n\nif __name__ == \"__main__\":\n    model = VLLMModel(\n        model=\"kl3m-1.7b\", ignore_cache=True\n    )\n\n    prompt = \"My name is \"\n    print(model.complete(prompt=prompt, temperature=0.5).text)\n\n# Output: Dr. Hermann Kamenzi, and\n```\n\n### Pydantic Example\n```python\nfrom pydantic import BaseModel\nfrom alea_llm_client import AnthropicModel, format_prompt, format_instructions\n\nclass Person(BaseModel):\n    name: str\n    age: int\n\nif __name__ == \"__main__\":\n    model = AnthropicModel(ignore_cache=True)\n\n    instructions = [\n        \"Provide one random record based on the SCHEMA below.\",\n    ]\n    prompt = format_prompt(\n        {\n            \"instructions\": format_instructions(instructions),\n            \"schema\": Person,\n        }\n    )\n\n    person = model.pydantic(prompt, system=\"Respond in JSON.\", pydantic_model=Person)\n    print(person)\n\n# Output: name='Olivia Chen' age=29\n```\n\n\n## Design\n\n### Class Inheritance\n\n```mermaid\nclassDiagram\n    BaseAIModel <|-- OpenAICompatibleModel\n    OpenAICompatibleModel <|-- AnthropicModel\n    OpenAICompatibleModel <|-- OpenAIModel\n    OpenAICompatibleModel <|-- VLLMModel\n    OpenAICompatibleModel <|-- GrokModel\n    BaseAIModel <|-- GoogleModel\n\n    class BaseAIModel {\n        <<abstract>>\n    }\n    class OpenAICompatibleModel\n    class AnthropicModel\n    class OpenAIModel\n    class VLLMModel\n    class GrokModel\n    class GoogleModel\n```\n\n### Example Call Flow\n\n```mermaid\nsequenceDiagram\n    participant Client\n    participant BaseAIModel\n    participant OpenAICompatibleModel\n    participant SpecificModel\n    participant API\n\n    Client->>BaseAIModel: json()\n    BaseAIModel->>BaseAIModel: _retry_wrapper()\n    BaseAIModel->>OpenAICompatibleModel: _json()\n    OpenAICompatibleModel->>OpenAICompatibleModel: format()\n    OpenAICompatibleModel->>OpenAICompatibleModel: _make_request()\n    OpenAICompatibleModel->>API: HTTP POST\n    API-->>OpenAICompatibleModel: Response\n    OpenAICompatibleModel->>OpenAICompatibleModel: _handle_json_response()\n    OpenAICompatibleModel-->>BaseAIModel: JSONModelResponse\n    BaseAIModel-->>Client: JSONModelResponse\n```\n\n## Testing\n\nThe library includes comprehensive test coverage with intelligent rate limiting for all 97 models:\n\n### Test Features\n* **All model providers**: OpenAI (72 models), Anthropic (9 models), Google (7 models), xAI (9 models), VLLM\n* **Complete API coverage**: Sync/async operations, JSON/Pydantic responses, error handling, retry logic\n* **Real API integration**: Tests use actual provider APIs with intelligent rate limiting\n* **Cache functionality**: Response caching with configurable ignore options\n\n### Rate Limiting Configuration\nPrevent API quota exhaustion with configurable delays:\n```bash\n# Google API (most restrictive)\nexport GOOGLE_API_DELAY=2.0        # Seconds between calls (default: 2.0)\nexport GOOGLE_API_CONCURRENT=1     # Max concurrent calls (default: 1)\n\n# Anthropic API  \nexport ANTHROPIC_API_DELAY=0.5     # Seconds between calls (default: 0.5)\nexport ANTHROPIC_API_CONCURRENT=3  # Max concurrent calls (default: 3)\n\n# OpenAI API\nexport OPENAI_API_DELAY=0.2        # Seconds between calls (default: 0.2)\nexport OPENAI_API_CONCURRENT=5     # Max concurrent calls (default: 5)\n\n# xAI/Grok API\nexport XAI_API_DELAY=1.0           # Seconds between calls (default: 1.0)\nexport XAI_API_CONCURRENT=2        # Max concurrent calls (default: 2)\n\n# VLLM (local servers)\nexport VLLM_API_DELAY=0.1          # Seconds between calls (default: 0.1)\nexport VLLM_API_CONCURRENT=10      # Max concurrent calls (default: 10)\n```\n\n### Running Tests\n```bash\n# Run all tests with rate limiting\nuv run pytest tests/\n\n# Run specific provider tests\nuv run pytest tests/test_openai.py\nuv run pytest tests/test_anthropic.py\n\n# Custom VLLM server testing\nexport VLLM_ENDPOINT=\"http://192.168.1.118:8080/\"\nexport VLLM_MODEL=\"Qwen/Qwen3-4B-Instruct-2507\"\nuv run pytest tests/test_vllm.py\n```\n\n## Migration Guide\n\n### Upgrading from v0.1.x to v0.2.x\n\n**\u26a0\ufe0f Important Changes:**\n\n1. **Google Model Key Path**: The Google API key path changed from `~/.alea/keys/google` to `~/.alea/keys/gemini`\n2. **Model Registry**: Now uses dynamic JSON configuration with 97 real models (was 50+ theoretical models)\n3. **Test Configuration**: Added rate limiting system - tests may run slower but prevent API quota exhaustion\n\n**Migration Steps:**\n```bash\n# 1. Update Google API key path if you use Google models\nmv ~/.alea/keys/google ~/.alea/keys/gemini  # If the file exists\n\n# 2. Update to latest version\npip install --upgrade alea-llm-client\n\n# 3. No code changes required - all existing APIs remain compatible\n```\n\n**What's New in v0.2.x:**\n- **97 Real Models**: All models now sourced from live API calls (vs theoretical documentation)\n- **Enhanced Capabilities**: Tool use, vision, computer use, thinking modes, reasoning tokens\n- **Better Testing**: Intelligent rate limiting prevents API quota issues\n- **Dynamic Configuration**: Model registry updates automatically from provider APIs\n\n**Breaking Changes (minimal impact):**\n- **Google key path**: `~/.alea/keys/google` \u2192 `~/.alea/keys/gemini`\n- **ModelResponse.text**: Changed from `Optional[str]` to `str` (empty string default)\n- **Test timing**: Rate limiting may slow test execution (configurable via environment variables)\n\n## License\n\nThe ALEA LLM client is released under the MIT License. See the [LICENSE](LICENSE) file for details.\n\n## Support\n\nIf you encounter any issues or have questions about using the ALEA LLM client library, please [open an issue](https://github.com/alea-institute/alea-llm-client/issues) on GitHub.\n\n## Learn More\n\nTo learn more about ALEA and its software and research projects like KL3M and leeky, visit the [ALEA website](https://aleainstitute.ai/).\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "ALEA LLM client abstraction library for Python",
    "version": "0.2.3",
    "project_urls": {
        "Homepage": "https://aleainstitute.ai/",
        "Repository": "https://github.com/alea-institute/alea-llm-client"
    },
    "split_keywords": [
        "alea",
        " api",
        " client",
        " llm"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "c193a0130c8c52054e372183ec13cc1a7fc4374dc0c45b881419828acb457215",
                "md5": "60b5212c2e8f1b8dfc0dbfd4e08a90d9",
                "sha256": "a3d94c8002bdd9178e06f1e19e6c715761dcb178b5e7c59555d34d84b5ff4474"
            },
            "downloads": -1,
            "filename": "alea_llm_client-0.2.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "60b5212c2e8f1b8dfc0dbfd4e08a90d9",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0.0,>=3.9",
            "size": 64557,
            "upload_time": "2025-08-20T19:44:59",
            "upload_time_iso_8601": "2025-08-20T19:44:59.654699Z",
            "url": "https://files.pythonhosted.org/packages/c1/93/a0130c8c52054e372183ec13cc1a7fc4374dc0c45b881419828acb457215/alea_llm_client-0.2.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "002717f285226d1dd68d19403e0d178d923a5e39dfc258b3c344bcc1eb44ade3",
                "md5": "2da134d5bc6cd01f399fcd1364fd1ae1",
                "sha256": "94ef8fa97c98fbe77d1d2b3a1a5aa7239d01a10a466ba72ba7a976c6f71ad7ec"
            },
            "downloads": -1,
            "filename": "alea_llm_client-0.2.3.tar.gz",
            "has_sig": false,
            "md5_digest": "2da134d5bc6cd01f399fcd1364fd1ae1",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0.0,>=3.9",
            "size": 50342,
            "upload_time": "2025-08-20T19:45:00",
            "upload_time_iso_8601": "2025-08-20T19:45:00.771110Z",
            "url": "https://files.pythonhosted.org/packages/00/27/17f285226d1dd68d19403e0d178d923a5e39dfc258b3c344bcc1eb44ade3/alea_llm_client-0.2.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-20 19:45:00",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "alea-institute",
    "github_project": "alea-llm-client",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "alea-llm-client"
}
        
Elapsed time: 3.50855s