alea-llm-client


Namealea-llm-client JSON
Version 0.1.1 PyPI version JSON
download
home_pagehttps://aleainstitute.ai/
SummaryALEA LLM client abstraction library for Python
upload_time2024-09-11 14:36:45
maintainerNone
docs_urlNone
authorALEA Institute
requires_python<4.0.0,>=3.9
licenseMIT
keywords alea llm client api
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ALEA LLM Client

[![PyPI version](https://badge.fury.io/py/alea-llm-client.svg)](https://badge.fury.io/py/alea-llm-client)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Python Versions](https://img.shields.io/pypi/pyversions/alea-llm-client.svg)](https://pypi.org/project/alea-llm-client/)

This is a simple, two-dependency (`httpx`, `pydantic`) LLM client for ~OpenAI APIs like:
 * OpenAI
 * Anthropic
 * VLLM

### Supported Patterns

It provides the following patterns for all endpoints:
 * `complete` and `complete_async` -> str via `ModelResponse`
 * `chat` and `chat_async` -> str via `ModelResponse`
 * `json` and `json_async` -> dict via `JSONModelResponse`
 * `pydantic` and `pydantic_async` -> pydantic models

### Default Caching

**Result caching is enabled by default for all methods.**

To disable caching, you can either:
  * set `ignore_cache=True` for each method call (`complete`, `chat`, `json`, `pydantic`)
  * set `ignore_cache=True` as a kwarg at model construction

Cached objects are stored in `~/.alea/cache/{provider}/{endpoint_model_hash}/{call_hash}.json`
in compressed `.json.gz` format.  You can delete these files to clear the cache.

### Authentication

Authentication is handled in the following priority order:
 * an `api_key` provided at model construction
 * a standard environment variable (e.g., `ANTHROPIC_API_KEY` or `OPENAI_API_KEY`)
 * a key stored in `~/.alea/keys/{provider}` (e.g., openai, anthropic)

### Streaming

Given the research focus of this library, streaming generation is not supported.  However,
you can directly access the `httpx` objects on `.client` and `.async_client` to stream responses
directly if you prefer.

## Installation

```bash
pip install alea-llm-client
```

## Examples


### Basic JSON Example

```python
from alea_llm_client import VLLMModel

if __name__ == "__main__":
    model = VLLMModel(
        endpoint="http://my.vllm.server:8000",
        model="meta-llama/Meta-Llama-3.1-8B-Instruct"
    )

    messages = [
        {
            "role": "user",
            "content": "Give me a JSON object with keys 'name' and 'age' for a person named Alice who is 30 years old.",
        },
    ]

    print(model.json(messages=messages, system="Respond in JSON.").data)

# Output: {'name': 'Alice', 'age': 30}
```

### Basic Completion Example with KL3M

```python
from alea_llm_client import VLLMModel

if __name__ == "__main__":
    model = VLLMModel(
        model="kl3m-1.7b", ignore_cache=True
    )

    prompt = "My name is "
    print(model.complete(prompt=prompt, temperature=0.5).text)

# Output: Dr. Hermann Kamenzi, and
```

### Pydantic Example
```python
from pydantic import BaseModel
from alea_llm_client import AnthropicModel
from alea_llm_client.llms.prompts.sections import format_prompt, format_instructions

class Person(BaseModel):
    name: str
    age: int

if __name__ == "__main__":
    model = AnthropicModel(ignore_cache=True)

    instructions = [
        "Provide one random record based on the SCHEMA below.",
    ]
    prompt = format_prompt(
        {
            "instructions": format_instructions(instructions),
            "schema": Person,
        }
    )

    person = model.pydantic(prompt, system="Respond in JSON.", pydantic_model=Person)
    print(person)

# Output: name='Olivia Chen' age=29
```


## Design

### Class Inheritance

```mermaid
classDiagram
    BaseAIModel <|-- OpenAICompatibleModel
    OpenAICompatibleModel <|-- AnthropicModel
    OpenAICompatibleModel <|-- OpenAIModel
    OpenAICompatibleModel <|-- VLLMModel

    class BaseAIModel {
        <<abstract>>
    }
    class OpenAICompatibleModel
    class AnthropicModel
    class OpenAIModel
    class VLLMModel
```

### Example Call Flow

```mermaid
sequenceDiagram
    participant Client
    participant BaseAIModel
    participant OpenAICompatibleModel
    participant SpecificModel
    participant API

    Client->>BaseAIModel: json()
    BaseAIModel->>BaseAIModel: _retry_wrapper()
    BaseAIModel->>OpenAICompatibleModel: _json()
    OpenAICompatibleModel->>OpenAICompatibleModel: format()
    OpenAICompatibleModel->>OpenAICompatibleModel: _make_request()
    OpenAICompatibleModel->>API: HTTP POST
    API-->>OpenAICompatibleModel: Response
    OpenAICompatibleModel->>OpenAICompatibleModel: _handle_json_response()
    OpenAICompatibleModel-->>BaseAIModel: JSONModelResponse
    BaseAIModel-->>Client: JSONModelResponse
```

## License

The ALEA LLM client is released under the MIT License. See the [LICENSE](LICENSE) file for details.

## Support

If you encounter any issues or have questions about using the ALEA LLM client library, please [open an issue](https://github.com/alea-institute/alea-llm-client/issues) on GitHub.

## Learn More

To learn more about ALEA and its software and research projects like KL3M and leeky, visit the [ALEA website](https://aleainstitute.ai/).

            

Raw data

            {
    "_id": null,
    "home_page": "https://aleainstitute.ai/",
    "name": "alea-llm-client",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0.0,>=3.9",
    "maintainer_email": null,
    "keywords": "alea, llm, client, api",
    "author": "ALEA Institute",
    "author_email": "hello@aleainstitute.ai",
    "download_url": "https://files.pythonhosted.org/packages/e1/eb/3eb3ebe97332cf244b4445bcf15b4c43c1037752e923a387990ff29a2843/alea_llm_client-0.1.1.tar.gz",
    "platform": null,
    "description": "# ALEA LLM Client\n\n[![PyPI version](https://badge.fury.io/py/alea-llm-client.svg)](https://badge.fury.io/py/alea-llm-client)\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n[![Python Versions](https://img.shields.io/pypi/pyversions/alea-llm-client.svg)](https://pypi.org/project/alea-llm-client/)\n\nThis is a simple, two-dependency (`httpx`, `pydantic`) LLM client for ~OpenAI APIs like:\n * OpenAI\n * Anthropic\n * VLLM\n\n### Supported Patterns\n\nIt provides the following patterns for all endpoints:\n * `complete` and `complete_async` -> str via `ModelResponse`\n * `chat` and `chat_async` -> str via `ModelResponse`\n * `json` and `json_async` -> dict via `JSONModelResponse`\n * `pydantic` and `pydantic_async` -> pydantic models\n\n### Default Caching\n\n**Result caching is enabled by default for all methods.**\n\nTo disable caching, you can either:\n  * set `ignore_cache=True` for each method call (`complete`, `chat`, `json`, `pydantic`)\n  * set `ignore_cache=True` as a kwarg at model construction\n\nCached objects are stored in `~/.alea/cache/{provider}/{endpoint_model_hash}/{call_hash}.json`\nin compressed `.json.gz` format.  You can delete these files to clear the cache.\n\n### Authentication\n\nAuthentication is handled in the following priority order:\n * an `api_key` provided at model construction\n * a standard environment variable (e.g., `ANTHROPIC_API_KEY` or `OPENAI_API_KEY`)\n * a key stored in `~/.alea/keys/{provider}` (e.g., openai, anthropic)\n\n### Streaming\n\nGiven the research focus of this library, streaming generation is not supported.  However,\nyou can directly access the `httpx` objects on `.client` and `.async_client` to stream responses\ndirectly if you prefer.\n\n## Installation\n\n```bash\npip install alea-llm-client\n```\n\n## Examples\n\n\n### Basic JSON Example\n\n```python\nfrom alea_llm_client import VLLMModel\n\nif __name__ == \"__main__\":\n    model = VLLMModel(\n        endpoint=\"http://my.vllm.server:8000\",\n        model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\"\n    )\n\n    messages = [\n        {\n            \"role\": \"user\",\n            \"content\": \"Give me a JSON object with keys 'name' and 'age' for a person named Alice who is 30 years old.\",\n        },\n    ]\n\n    print(model.json(messages=messages, system=\"Respond in JSON.\").data)\n\n# Output: {'name': 'Alice', 'age': 30}\n```\n\n### Basic Completion Example with KL3M\n\n```python\nfrom alea_llm_client import VLLMModel\n\nif __name__ == \"__main__\":\n    model = VLLMModel(\n        model=\"kl3m-1.7b\", ignore_cache=True\n    )\n\n    prompt = \"My name is \"\n    print(model.complete(prompt=prompt, temperature=0.5).text)\n\n# Output: Dr. Hermann Kamenzi, and\n```\n\n### Pydantic Example\n```python\nfrom pydantic import BaseModel\nfrom alea_llm_client import AnthropicModel\nfrom alea_llm_client.llms.prompts.sections import format_prompt, format_instructions\n\nclass Person(BaseModel):\n    name: str\n    age: int\n\nif __name__ == \"__main__\":\n    model = AnthropicModel(ignore_cache=True)\n\n    instructions = [\n        \"Provide one random record based on the SCHEMA below.\",\n    ]\n    prompt = format_prompt(\n        {\n            \"instructions\": format_instructions(instructions),\n            \"schema\": Person,\n        }\n    )\n\n    person = model.pydantic(prompt, system=\"Respond in JSON.\", pydantic_model=Person)\n    print(person)\n\n# Output: name='Olivia Chen' age=29\n```\n\n\n## Design\n\n### Class Inheritance\n\n```mermaid\nclassDiagram\n    BaseAIModel <|-- OpenAICompatibleModel\n    OpenAICompatibleModel <|-- AnthropicModel\n    OpenAICompatibleModel <|-- OpenAIModel\n    OpenAICompatibleModel <|-- VLLMModel\n\n    class BaseAIModel {\n        <<abstract>>\n    }\n    class OpenAICompatibleModel\n    class AnthropicModel\n    class OpenAIModel\n    class VLLMModel\n```\n\n### Example Call Flow\n\n```mermaid\nsequenceDiagram\n    participant Client\n    participant BaseAIModel\n    participant OpenAICompatibleModel\n    participant SpecificModel\n    participant API\n\n    Client->>BaseAIModel: json()\n    BaseAIModel->>BaseAIModel: _retry_wrapper()\n    BaseAIModel->>OpenAICompatibleModel: _json()\n    OpenAICompatibleModel->>OpenAICompatibleModel: format()\n    OpenAICompatibleModel->>OpenAICompatibleModel: _make_request()\n    OpenAICompatibleModel->>API: HTTP POST\n    API-->>OpenAICompatibleModel: Response\n    OpenAICompatibleModel->>OpenAICompatibleModel: _handle_json_response()\n    OpenAICompatibleModel-->>BaseAIModel: JSONModelResponse\n    BaseAIModel-->>Client: JSONModelResponse\n```\n\n## License\n\nThe ALEA LLM client is released under the MIT License. See the [LICENSE](LICENSE) file for details.\n\n## Support\n\nIf you encounter any issues or have questions about using the ALEA LLM client library, please [open an issue](https://github.com/alea-institute/alea-llm-client/issues) on GitHub.\n\n## Learn More\n\nTo learn more about ALEA and its software and research projects like KL3M and leeky, visit the [ALEA website](https://aleainstitute.ai/).\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "ALEA LLM client abstraction library for Python",
    "version": "0.1.1",
    "project_urls": {
        "Homepage": "https://aleainstitute.ai/",
        "Repository": "https://github.com/alea-institute/alea-llm-client"
    },
    "split_keywords": [
        "alea",
        " llm",
        " client",
        " api"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8932f6bf0679867e734ce6285a69ceed2dbe9a96c6c8c0ba0a7995afa2785bbd",
                "md5": "5dd01e2f93eac7d61e6dcf15d65838ff",
                "sha256": "5db16d9f5cbc643a16d5ee1bc2ac8e0b3bedae9480eb5650ea9bce2b2da33d7c"
            },
            "downloads": -1,
            "filename": "alea_llm_client-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "5dd01e2f93eac7d61e6dcf15d65838ff",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0.0,>=3.9",
            "size": 25601,
            "upload_time": "2024-09-11T14:36:43",
            "upload_time_iso_8601": "2024-09-11T14:36:43.754656Z",
            "url": "https://files.pythonhosted.org/packages/89/32/f6bf0679867e734ce6285a69ceed2dbe9a96c6c8c0ba0a7995afa2785bbd/alea_llm_client-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e1eb3eb3ebe97332cf244b4445bcf15b4c43c1037752e923a387990ff29a2843",
                "md5": "387d4971350612e92fad43c91bec6e27",
                "sha256": "dc3b063851424da526c23337ccd31eb9bfb1232f9512f889b4f055071cc72b3a"
            },
            "downloads": -1,
            "filename": "alea_llm_client-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "387d4971350612e92fad43c91bec6e27",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0.0,>=3.9",
            "size": 20215,
            "upload_time": "2024-09-11T14:36:45",
            "upload_time_iso_8601": "2024-09-11T14:36:45.468633Z",
            "url": "https://files.pythonhosted.org/packages/e1/eb/3eb3ebe97332cf244b4445bcf15b4c43c1037752e923a387990ff29a2843/alea_llm_client-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-11 14:36:45",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "alea-institute",
    "github_project": "alea-llm-client",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "alea-llm-client"
}
        
Elapsed time: 0.33730s