algophon


Namealgophon JSON
Version 0.1.5 PyPI version JSON
download
home_pageNone
SummaryTools for an algorithmic approach to phonology (some useful to computational phonology and morphology more broadly)
upload_time2024-08-16 00:54:46
maintainerNone
docs_urlNone
authorCaleb Belth
requires_python>=3.8
licenseApache 2.0
keywords computational linguistics phonology morphology natural language processing
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # algophon

**Code for working on computational phonology and morphology in Python.** 

This package is based on code developed by [Caleb Belth](https://cbelth.github.io/) during the course of his PhD; the title of his [dissertation](https://cbelth.github.io/public/assets/documents/belth_dissertation.pdf), *Towards an Algorithmic Account of Phonological Rules and Representations*, serves as the origin for the repository's name *algophon*.

The package is under active development! The PyPI distribution and documentation are updated as the project progresses. The package includes:
1. Handy tools for working with strings of phonological segments.
2. Implementations of computational learning models.

**Suggestions are welcome!**

## Install

```bash
pip install algophon
```

## Working With Strings of Segments

The code at the top level of the package provides some nice functionality for easily working with strings of phonological segments.

The following examples assume you have imported the appropriate classes:

```pycon
>>> from algophon import Seg, SegInv, SegStr, NatClass
```

### Segments: `Seg`

**A class to represent a phonological segment.**

You are unlikely to be creating `Seg` objects yourself very often. They will usually be constructed internally by other parts of the package (in particular, see `SegInv` and `SegStr`). However, if you ever need to, creating a `Seg` object requires the following arguments:
- `ipa`: a `str` IPA symbol
- `features` (optional): a `dict` of features mapping to their corresponding values

```pycon
>>> seg = Seg(ipa='i', features={'syl': '+', 'voi': '+', 'stri': '0'})
```

What is important to know is how `Seg` objects behave, and why they are handy.

<span style="color:green">**First**</span>, in the important respects `Seg` behaves like the `str` IPA segment used to create it.

If you `print` a `Seg` object, it will print its IPA:

```pycon
>>> print(seg)
i
```

If you compare a `Seg` object to a `str`, it will behave like it is the IPA symbol:

```pycon
>>> print(seg == 'i')
True
>>> print(seg == 'e')
False
```

A `Seg` object hashes to the same value as its IPA symbol:

```pycon
>>> print(len({seg, 'i'}))
1
>>> print('i' in {seg}, seg in {'i'})
True True
```

<span style="color:green">**Second**</span>, in the important respects `Seg` behaves like a feature bundle (see also the other classes, where other benefits will become clear).

```pycon
>>> print(seg.features['syl'])
+
```

<span style="color:green">**Third**</span>, `Seg` handles IPA symbols that are longer than one Unicode char.

```pycon
>>> tsh = Seg(ipa='t͡ʃ')
>>> print(tsh)
t͡ʃ
>>> print(len(tsh))
1
>>> from algophon.symbols import LONG # see description of symbols below
>>> long_i = Seg(ipa=f'i{LONG}')
>>> print(long_i)
iː
>>> print(len(long_i))
1
```

### Segment Inventory: `SegInv`

**A class to represent an inventory of phonological segments (Seg objects).**

A `SegInv` object is a collection of `Seg` objects. A `SegInv` requires no arguments to construct, though it provides two optional arguments:
- `ipa_file_path`: a `str` pointing to a file of segment-feature mappings.
- `sep`: a `str` specifying the column separator of the `ipa_file_path` file.

By default, `SegInv` uses [Panphon](https://github.com/dmort27/panphon) (Mortensen et. al., 2016) features. The optional parameters allow you to use your own features. The file at `ipa_file_path` must be formatted like this:
- The first row must be a header of feature names, separated by the `sep` (by default, `\t`)
- The first column must contain the segment IPAs (the header row can have anything, e.g., `SEG`)
- The remaining columns (non-first row) must contain the feature values.

When a `SegInv` object is created, it is empty:

```pycon
>>> seginv = SegInv()
>>> seginv
SegInv of size 0
```

You can add segments by the `add`, `add_segments`, and `add_segments_by_str` methods:

```pycon
>>> seginv.add('i')
>>> print(seginv.segs)
{i}
>>> seginv.add_segs({'p', 'b', 't', 'd'})
>>> print(seginv.segs)
{b, t, d, i, p}
>>> seginv.add_segs_by_str('eː n t j ə') # segments in str must be space-separated
>>> print(seginv.segs)
{b, t, d, i, j, n, p, ə, eː}
```

The reason that `add_segs_by_str` requires the segments to be space-separated is because not all IPA symbols are only one char (e.g., `'eː'`). Moreover, this is consistent with the [Sigmorphon](https://github.com/sigmorphon) challenges data format commonly used in morphophonology tasks.

These `add*` methods automatically create `Seg` objects and assign them `features` based on either Panphon (default) or the `ipa_file_path` file.

```pycon
>>> print(seginv['eː'].features)
{'syl': '+', 'son': '+', 'cons': '-', 'cont': '+', 'delrel': '-', 'lat': '-', 'nas': '-', 'strid': '0', 'voi': '+', 'sg': '-', 'cg': '-', 'ant': '0', 'cor': '-', 'distr': '0', 'lab': '-', 'hi': '-', 'lo': '-', 'back': '-', 'round': '-', 'velaric': '-', 'tense': '+', 'long': '+', 'hitone': '0', 'hireg': '0'}
```

This also demonstrates that `seginv` operates like a dictionary in that you can retrieve and check the existence of segments by their IPA.

```pycon
>>> 'eː' in seginv
True
```

### Strings of Segments: `SegStr`

**A class to represent a sequence of phonological segments (Seg objects).**

The class `SegStr` allows for handling several tricky aspects of IPA sequences. It is common practice to represent strings of IPA sequences in a space-separated fashion such that, for example, [eːntjə] is represented `'eː n t j ə'`.

Creating a `SegStr` object requires the following arguments:
  - `segs`: a collection of segments, which can be in any of the following formats:
    - str of IPA symbols, where each symbol is separated by a space ' ' (**most common**)
    - list of IPA symbols
    - list of Seg objects
  - `seginv`: a `SegInv` object

```pycon
>>> seginv = SegInv() # init SegInv
>>> seq = SegStr('eː n t j ə', seginv)
>>> print(seq)
eːntjə
```

Creating the `SegStr` object automatically adds the segments in the object to the `SegInv` object.

```pycon
>>> print(seginv.segs)
{ə, t, n, j, eː}
```

For clean visualization, `SegStr` displays the sequence of segments without spaces, as `print(seq)` shows above. But internally a `SegStr` object knows what the segments are:

```pycon
>>> print(len(seq))
5
>>> seq[0]
eː
>>> type(seq[0]) # indexing returns a Seg object
<class 'algophon.seg.Seg'>
>>> seq[-2:]
jə
>>> type(seq[-2:]) # slicing returns a new SegStr object
<class 'algophon.segstr.SegStr'>
>>> seq[-2:] == 'j ə' # comparison to str objects works as expected
True
>>> seq[-2:] == 'ə n'
False
```

`SegStr` also implements equivalents of useful `str` methods.

```pycon
>>> seq.endswith('j ə')
True
>>> dim_sufx = seq[-2:]
>>> seq.endswith(dim_sufx)
True
>>> seq.startswith(seq[:-2])
True
```

A `SegStr` object hashes to the value of its (space-separated) string:

```pycon
>>> len({seq, 'eː n t j ə'})
1
>>> seq in {'eː n t j ə'}
True
```

### Natural Class: `NatClass`

**A class to represent a Natural class, in the sense of sets of segments represented intensionally as conjunctions of features.**

```pycon
>>> son = NatClass(feats={'+son'}, seginv=seginv)
>>> son
[+son]
>>> 'ə' in son
True
>>> 'n' in son
True
>>> 't' in son
False
```

The class also allows you to get the natural class's extension and the extension's complement, relative to the `SegInv` (in our example, only `{ə, t, n, j, eː}` are in `seginv`):

```pycon
>>> son.extension()
{eː, j, ə, n}
>>> son.extension_complement()
{t}
```

You can also retrieve an extension (complement) directly from a `SegInv` object without creating a `NatClass` obj:

```pycon
>>> seginv.extension({'+syl'})
{ə, eː}
>>> seginv.extension_complement({'+syl'})
{j, t, n}
```

### Symbols: The `symbols` module

The `symbols` module (technically just a file...) contains a number of constant variables that store some useful symbols:

```python
LWB = '⋊'
RWB = '⋉'
SYLB = '.'
MORPHB = '-'
BOUNDARIES = [LWB, RWB, SYLB, MORPHB]
PRIMARY_STRESS = 'ˈ'
SEC_STRESS = 'ˌ'
LONG = 'ː'
NASALIZED = '\u0303'  # ◌̃
UNDERSPECIFIED = '0'
UNK = '?'
NEG = '¬'
EMPTY = '_'
FUNCTION_COMPOSITION = '∘'
```

These can be accessed like this:

```pycon
>>> from algophon.symbols import *
>>> NASALIZED
'̃'
>>> f'i{LONG}'
iː
```

## Learning Models

### D2L

An implementation of the model "Distant to Local" from the following paper:

```bibtex
@article{belth2024tiers,
    title={A Learning-Based Account of Phonological Tiers},
    author={Belth, Caleb},
    journal={Linguistic Inquiry},
    year={2024},
    publisher={MIT Press},
    url = {https://doi.org/10.1162/ling\_a\_00530},
}
```

Please see the models [README](https://github.com/cbelth/algophon/blob/main/algophon/models/README.md) for details.

### PLP

<span style="color:orange">[Work in Progress](https://github.com/cbelth/algophon/pull/5)</span>

### Mɪᴀꜱᴇɢ

An implementation of the model "Meaning Informed Segmentation of Agglutinative Morphology" (Mɪᴀꜱᴇɢ) from the following paper:

```bibtex
@inproceedings{belth2024miaseg,
  title={Meaning-Informed Low-Resource Segmentation of Agglutinative Morphology},
  author={Belth, Caleb},
  booktitle={Proceedings of the Society for Computation in Linguistics},
  year={2024}
}
```

Please see the models [README](https://github.com/cbelth/algophon/blob/main/algophon/models/README.md) for details.

### Other Models

<span style="color:orange">Work in Progress</span>

## Citation

If you use this package in your research, you can use the following citation:

```bibtex
@phdthesis{belth2023towards,
  title={{Towards an Algorithmic Account of Phonological Rules and Representations}},
  author={Belth, Caleb},
  year={2023},
  school={{University of Michigan}}
}
```

If you use one of the computational models, please cite the corresponding paper(s).

## References

- Mortensen, D. R., Littell, P., Bharadwaj, A., Goyal, K., Dyer, C., & Levin, L. (2016, December). Panphon: A resource for mapping IPA segments to articulatory feature vectors. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers (pp. 3475-3484).

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "algophon",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "computational linguistics, phonology, morphology, natural language processing",
    "author": "Caleb Belth",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/d0/e2/be5ea4f2c2d90f72858aed7f40d1f31c157994014cddba6864f2492a70f3/algophon-0.1.5.tar.gz",
    "platform": null,
    "description": "# algophon\n\n**Code for working on computational phonology and morphology in Python.** \n\nThis package is based on code developed by [Caleb Belth](https://cbelth.github.io/) during the course of his PhD; the title of his [dissertation](https://cbelth.github.io/public/assets/documents/belth_dissertation.pdf), *Towards an Algorithmic Account of Phonological Rules and Representations*, serves as the origin for the repository's name *algophon*.\n\nThe package is under active development! The PyPI distribution and documentation are updated as the project progresses. The package includes:\n1. Handy tools for working with strings of phonological segments.\n2. Implementations of computational learning models.\n\n**Suggestions are welcome!**\n\n## Install\n\n```bash\npip install algophon\n```\n\n## Working With Strings of Segments\n\nThe code at the top level of the package provides some nice functionality for easily working with strings of phonological segments.\n\nThe following examples assume you have imported the appropriate classes:\n\n```pycon\n>>> from algophon import Seg, SegInv, SegStr, NatClass\n```\n\n### Segments: `Seg`\n\n**A class to represent a phonological segment.**\n\nYou are unlikely to be creating `Seg` objects yourself very often. They will usually be constructed internally by other parts of the package (in particular, see `SegInv` and `SegStr`). However, if you ever need to, creating a `Seg` object requires the following arguments:\n- `ipa`: a `str` IPA symbol\n- `features` (optional): a `dict` of features mapping to their corresponding values\n\n```pycon\n>>> seg = Seg(ipa='i', features={'syl': '+', 'voi': '+', 'stri': '0'})\n```\n\nWhat is important to know is how `Seg` objects behave, and why they are handy.\n\n<span style=\"color:green\">**First**</span>, in the important respects `Seg` behaves like the `str` IPA segment used to create it.\n\nIf you `print` a `Seg` object, it will print its IPA:\n\n```pycon\n>>> print(seg)\ni\n```\n\nIf you compare a `Seg` object to a `str`, it will behave like it is the IPA symbol:\n\n```pycon\n>>> print(seg == 'i')\nTrue\n>>> print(seg == 'e')\nFalse\n```\n\nA `Seg` object hashes to the same value as its IPA symbol:\n\n```pycon\n>>> print(len({seg, 'i'}))\n1\n>>> print('i' in {seg}, seg in {'i'})\nTrue True\n```\n\n<span style=\"color:green\">**Second**</span>, in the important respects `Seg` behaves like a feature bundle (see also the other classes, where other benefits will become clear).\n\n```pycon\n>>> print(seg.features['syl'])\n+\n```\n\n<span style=\"color:green\">**Third**</span>, `Seg` handles IPA symbols that are longer than one Unicode char.\n\n```pycon\n>>> tsh = Seg(ipa='t\u0361\u0283')\n>>> print(tsh)\nt\u0361\u0283\n>>> print(len(tsh))\n1\n>>> from algophon.symbols import LONG # see description of symbols below\n>>> long_i = Seg(ipa=f'i{LONG}')\n>>> print(long_i)\ni\u02d0\n>>> print(len(long_i))\n1\n```\n\n### Segment Inventory: `SegInv`\n\n**A class to represent an inventory of phonological segments (Seg objects).**\n\nA `SegInv` object is a collection of `Seg` objects. A `SegInv` requires no arguments to construct, though it provides two optional arguments:\n- `ipa_file_path`: a `str` pointing to a file of segment-feature mappings.\n- `sep`: a `str` specifying the column separator of the `ipa_file_path` file.\n\nBy default, `SegInv` uses [Panphon](https://github.com/dmort27/panphon) (Mortensen et. al., 2016) features. The optional parameters allow you to use your own features. The file at `ipa_file_path` must be formatted like this:\n- The first row must be a header of feature names, separated by the `sep` (by default, `\\t`)\n- The first column must contain the segment IPAs (the header row can have anything, e.g., `SEG`)\n- The remaining columns (non-first row) must contain the feature values.\n\nWhen a `SegInv` object is created, it is empty:\n\n```pycon\n>>> seginv = SegInv()\n>>> seginv\nSegInv of size 0\n```\n\nYou can add segments by the `add`, `add_segments`, and `add_segments_by_str` methods:\n\n```pycon\n>>> seginv.add('i')\n>>> print(seginv.segs)\n{i}\n>>> seginv.add_segs({'p', 'b', 't', 'd'})\n>>> print(seginv.segs)\n{b, t, d, i, p}\n>>> seginv.add_segs_by_str('e\u02d0 n t j \u0259') # segments in str must be space-separated\n>>> print(seginv.segs)\n{b, t, d, i, j, n, p, \u0259, e\u02d0}\n```\n\nThe reason that `add_segs_by_str` requires the segments to be space-separated is because not all IPA symbols are only one char (e.g., `'e\u02d0'`). Moreover, this is consistent with the [Sigmorphon](https://github.com/sigmorphon) challenges data format commonly used in morphophonology tasks.\n\nThese `add*` methods automatically create `Seg` objects and assign them `features` based on either Panphon (default) or the `ipa_file_path` file.\n\n```pycon\n>>> print(seginv['e\u02d0'].features)\n{'syl': '+', 'son': '+', 'cons': '-', 'cont': '+', 'delrel': '-', 'lat': '-', 'nas': '-', 'strid': '0', 'voi': '+', 'sg': '-', 'cg': '-', 'ant': '0', 'cor': '-', 'distr': '0', 'lab': '-', 'hi': '-', 'lo': '-', 'back': '-', 'round': '-', 'velaric': '-', 'tense': '+', 'long': '+', 'hitone': '0', 'hireg': '0'}\n```\n\nThis also demonstrates that `seginv` operates like a dictionary in that you can retrieve and check the existence of segments by their IPA.\n\n```pycon\n>>> 'e\u02d0' in seginv\nTrue\n```\n\n### Strings of Segments: `SegStr`\n\n**A class to represent a sequence of phonological segments (Seg objects).**\n\nThe class `SegStr` allows for handling several tricky aspects of IPA sequences. It is common practice to represent strings of IPA sequences in a space-separated fashion such that, for example, [e\u02d0ntj\u0259] is represented `'e\u02d0 n t j \u0259'`.\n\nCreating a `SegStr` object requires the following arguments:\n  - `segs`: a collection of segments, which can be in any of the following formats:\n    - str of IPA symbols, where each symbol is separated by a space ' ' (**most common**)\n    - list of IPA symbols\n    - list of Seg objects\n  - `seginv`: a `SegInv` object\n\n```pycon\n>>> seginv = SegInv() # init SegInv\n>>> seq = SegStr('e\u02d0 n t j \u0259', seginv)\n>>> print(seq)\ne\u02d0ntj\u0259\n```\n\nCreating the `SegStr` object automatically adds the segments in the object to the `SegInv` object.\n\n```pycon\n>>> print(seginv.segs)\n{\u0259, t, n, j, e\u02d0}\n```\n\nFor clean visualization, `SegStr` displays the sequence of segments without spaces, as `print(seq)` shows above. But internally a `SegStr` object knows what the segments are:\n\n```pycon\n>>> print(len(seq))\n5\n>>> seq[0]\ne\u02d0\n>>> type(seq[0]) # indexing returns a Seg object\n<class 'algophon.seg.Seg'>\n>>> seq[-2:]\nj\u0259\n>>> type(seq[-2:]) # slicing returns a new SegStr object\n<class 'algophon.segstr.SegStr'>\n>>> seq[-2:] == 'j \u0259' # comparison to str objects works as expected\nTrue\n>>> seq[-2:] == '\u0259 n'\nFalse\n```\n\n`SegStr` also implements equivalents of useful `str` methods.\n\n```pycon\n>>> seq.endswith('j \u0259')\nTrue\n>>> dim_sufx = seq[-2:]\n>>> seq.endswith(dim_sufx)\nTrue\n>>> seq.startswith(seq[:-2])\nTrue\n```\n\nA `SegStr` object hashes to the value of its (space-separated) string:\n\n```pycon\n>>> len({seq, 'e\u02d0 n t j \u0259'})\n1\n>>> seq in {'e\u02d0 n t j \u0259'}\nTrue\n```\n\n### Natural Class: `NatClass`\n\n**A class to represent a Natural class, in the sense of sets of segments represented intensionally as conjunctions of features.**\n\n```pycon\n>>> son = NatClass(feats={'+son'}, seginv=seginv)\n>>> son\n[+son]\n>>> '\u0259' in son\nTrue\n>>> 'n' in son\nTrue\n>>> 't' in son\nFalse\n```\n\nThe class also allows you to get the natural class's extension and the extension's complement, relative to the `SegInv` (in our example, only `{\u0259, t, n, j, e\u02d0}` are in `seginv`):\n\n```pycon\n>>> son.extension()\n{e\u02d0, j, \u0259, n}\n>>> son.extension_complement()\n{t}\n```\n\nYou can also retrieve an extension (complement) directly from a `SegInv` object without creating a `NatClass` obj:\n\n```pycon\n>>> seginv.extension({'+syl'})\n{\u0259, e\u02d0}\n>>> seginv.extension_complement({'+syl'})\n{j, t, n}\n```\n\n### Symbols: The `symbols` module\n\nThe `symbols` module (technically just a file...) contains a number of constant variables that store some useful symbols:\n\n```python\nLWB = '\u22ca'\nRWB = '\u22c9'\nSYLB = '.'\nMORPHB = '-'\nBOUNDARIES = [LWB, RWB, SYLB, MORPHB]\nPRIMARY_STRESS = '\u02c8'\nSEC_STRESS = '\u02cc'\nLONG = '\u02d0'\nNASALIZED = '\\u0303'  # \u25cc\u0303\nUNDERSPECIFIED = '0'\nUNK = '?'\nNEG = '\u00ac'\nEMPTY = '_'\nFUNCTION_COMPOSITION = '\u2218'\n```\n\nThese can be accessed like this:\n\n```pycon\n>>> from algophon.symbols import *\n>>> NASALIZED\n'\u0303'\n>>> f'i{LONG}'\ni\u02d0\n```\n\n## Learning Models\n\n### D2L\n\nAn implementation of the model \"Distant to Local\" from the following paper:\n\n```bibtex\n@article{belth2024tiers,\n    title={A Learning-Based Account of Phonological Tiers},\n    author={Belth, Caleb},\n    journal={Linguistic Inquiry},\n    year={2024},\n    publisher={MIT Press},\n    url = {https://doi.org/10.1162/ling\\_a\\_00530},\n}\n```\n\nPlease see the models [README](https://github.com/cbelth/algophon/blob/main/algophon/models/README.md) for details.\n\n### PLP\n\n<span style=\"color:orange\">[Work in Progress](https://github.com/cbelth/algophon/pull/5)</span>\n\n### M\u026a\u1d00\ua731\u1d07\u0262\n\nAn implementation of the model \"Meaning Informed Segmentation of Agglutinative Morphology\" (M\u026a\u1d00\ua731\u1d07\u0262) from the following paper:\n\n```bibtex\n@inproceedings{belth2024miaseg,\n  title={Meaning-Informed Low-Resource Segmentation of Agglutinative Morphology},\n  author={Belth, Caleb},\n  booktitle={Proceedings of the Society for Computation in Linguistics},\n  year={2024}\n}\n```\n\nPlease see the models [README](https://github.com/cbelth/algophon/blob/main/algophon/models/README.md) for details.\n\n### Other Models\n\n<span style=\"color:orange\">Work in Progress</span>\n\n## Citation\n\nIf you use this package in your research, you can use the following citation:\n\n```bibtex\n@phdthesis{belth2023towards,\n  title={{Towards an Algorithmic Account of Phonological Rules and Representations}},\n  author={Belth, Caleb},\n  year={2023},\n  school={{University of Michigan}}\n}\n```\n\nIf you use one of the computational models, please cite the corresponding paper(s).\n\n## References\n\n- Mortensen, D. R., Littell, P., Bharadwaj, A., Goyal, K., Dyer, C., & Levin, L. (2016, December). Panphon: A resource for mapping IPA segments to articulatory feature vectors. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers (pp. 3475-3484).\n",
    "bugtrack_url": null,
    "license": "Apache 2.0",
    "summary": "Tools for an algorithmic approach to phonology (some useful to computational phonology and morphology more broadly)",
    "version": "0.1.5",
    "project_urls": {
        "Homepage": "https://github.com/cbelth/algophon"
    },
    "split_keywords": [
        "computational linguistics",
        " phonology",
        " morphology",
        " natural language processing"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c85e23e52f5e59927f9ec13573c45a7fd0b65aa9884a1e9f43dec0c294e5667b",
                "md5": "7e780bab53b17a8e193a09c6cd18fe81",
                "sha256": "022d8b8ed435a625cc54fff082c84b65edbf13c745214a8f57fb714ee11edfab"
            },
            "downloads": -1,
            "filename": "algophon-0.1.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7e780bab53b17a8e193a09c6cd18fe81",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 70015,
            "upload_time": "2024-08-16T00:54:44",
            "upload_time_iso_8601": "2024-08-16T00:54:44.386630Z",
            "url": "https://files.pythonhosted.org/packages/c8/5e/23e52f5e59927f9ec13573c45a7fd0b65aa9884a1e9f43dec0c294e5667b/algophon-0.1.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d0e2be5ea4f2c2d90f72858aed7f40d1f31c157994014cddba6864f2492a70f3",
                "md5": "6666c4b9aeb2c42e5671c436d8f961ff",
                "sha256": "5b0ad4168976d73f2392e4bebe1e81a05ebe36c836c49594d965346280963285"
            },
            "downloads": -1,
            "filename": "algophon-0.1.5.tar.gz",
            "has_sig": false,
            "md5_digest": "6666c4b9aeb2c42e5671c436d8f961ff",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 78503,
            "upload_time": "2024-08-16T00:54:46",
            "upload_time_iso_8601": "2024-08-16T00:54:46.083439Z",
            "url": "https://files.pythonhosted.org/packages/d0/e2/be5ea4f2c2d90f72858aed7f40d1f31c157994014cddba6864f2492a70f3/algophon-0.1.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-16 00:54:46",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "cbelth",
    "github_project": "algophon",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "algophon"
}
        
Elapsed time: 0.35400s