# ALPineFOREst
**A**ctive **L**earning **Pipel**ine **For** **Optima**l **Ranking Estimation**
[](https://pypi.org/project/alpfore/)
ALPineFOREst is a flexible, modular framework for conducting large-scale active learning campaigns in scientific and materials research. It supports molecular dynamics (MD)-based evaluations, customizable models (e.g., Gaussian Processes), and popular Bayesian optimization strategies like Thompson Sampling — all within a high-throughput, reproducible pipeline.
---
## Installation
Install via PyPI:
```
pip install alpfore
```
Or to install from source:
```
git clone https://github.com/nherringer/ALPineFOREst.git
cd ALPineFOREst
pip install -e .
```
Raw data
{
"_id": null,
"home_page": "https://github.com/nherringer/ALPineFOREst",
"name": "alpfore",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.7",
"maintainer_email": null,
"keywords": "active learning, molecular simulation, machine learning",
"author": "Nicholas Herringer",
"author_email": "nherringer@uchicago.edu",
"download_url": "https://files.pythonhosted.org/packages/a9/81/10e41c6b06a91456a12ad7d0a914cbae7fafb186ffac2786e597511984bf/alpfore-0.1.5.tar.gz",
"platform": null,
"description": "# ALPineFOREst\n\n**A**ctive **L**earning **Pipel**ine **For** **Optima**l **Ranking Estimation**\n\n[](https://pypi.org/project/alpfore/)\n\nALPineFOREst is a flexible, modular framework for conducting large-scale active learning campaigns in scientific and materials research. It supports molecular dynamics (MD)-based evaluations, customizable models (e.g., Gaussian Processes), and popular Bayesian optimization strategies like Thompson Sampling \u2014 all within a high-throughput, reproducible pipeline.\n\n---\n\n## Installation\n\nInstall via PyPI:\n```\npip install alpfore\n```\nOr to install from source:\n```\ngit clone https://github.com/nherringer/ALPineFOREst.git\ncd ALPineFOREst\npip install -e .\n```\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Active Learning Pipeline For Optimal Ranking Estimation",
"version": "0.1.5",
"project_urls": {
"Homepage": "https://github.com/nherringer/ALPineFOREst",
"Repository": "https://github.com/nherringer/ALPineFOREst"
},
"split_keywords": [
"active learning",
" molecular simulation",
" machine learning"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "7e5a9c9c5e9924d9bffde7168635dad826870931cff3f692ed3c47bd5b181a0e",
"md5": "ae4eb91b02bad632b085b190aa22aff5",
"sha256": "1e8d8e1cdf47146729b8fb390d4a825eb9fa0d317917d6a5effef4224ac2a060"
},
"downloads": -1,
"filename": "alpfore-0.1.5-py3-none-any.whl",
"has_sig": false,
"md5_digest": "ae4eb91b02bad632b085b190aa22aff5",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.7",
"size": 29129,
"upload_time": "2025-08-23T06:51:12",
"upload_time_iso_8601": "2025-08-23T06:51:12.734644Z",
"url": "https://files.pythonhosted.org/packages/7e/5a/9c9c5e9924d9bffde7168635dad826870931cff3f692ed3c47bd5b181a0e/alpfore-0.1.5-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a98110e41c6b06a91456a12ad7d0a914cbae7fafb186ffac2786e597511984bf",
"md5": "0b73a9781c730f93deaff4ad7d672414",
"sha256": "24789c81733e3ab0365c41c33961c3347d12795f2c239843b0beb79dc9b5dc26"
},
"downloads": -1,
"filename": "alpfore-0.1.5.tar.gz",
"has_sig": false,
"md5_digest": "0b73a9781c730f93deaff4ad7d672414",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.7",
"size": 21072,
"upload_time": "2025-08-23T06:51:13",
"upload_time_iso_8601": "2025-08-23T06:51:13.837653Z",
"url": "https://files.pythonhosted.org/packages/a9/81/10e41c6b06a91456a12ad7d0a914cbae7fafb186ffac2786e597511984bf/alpfore-0.1.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-23 06:51:13",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "nherringer",
"github_project": "ALPineFOREst",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "alpfore"
}