alpfore


Namealpfore JSON
Version 0.1.5 PyPI version JSON
download
home_pagehttps://github.com/nherringer/ALPineFOREst
SummaryActive Learning Pipeline For Optimal Ranking Estimation
upload_time2025-08-23 06:51:13
maintainerNone
docs_urlNone
authorNicholas Herringer
requires_python<4.0,>=3.7
licenseMIT
keywords active learning molecular simulation machine learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ALPineFOREst

**A**ctive **L**earning **Pipel**ine **For** **Optima**l **Ranking Estimation**

[![PyPI version](https://badge.fury.io/py/alpfore.svg)](https://pypi.org/project/alpfore/)

ALPineFOREst is a flexible, modular framework for conducting large-scale active learning campaigns in scientific and materials research. It supports molecular dynamics (MD)-based evaluations, customizable models (e.g., Gaussian Processes), and popular Bayesian optimization strategies like Thompson Sampling — all within a high-throughput, reproducible pipeline.

---

## Installation

Install via PyPI:
```
pip install alpfore
```
Or to install from source:
```
git clone https://github.com/nherringer/ALPineFOREst.git
cd ALPineFOREst
pip install -e .
```


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/nherringer/ALPineFOREst",
    "name": "alpfore",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.7",
    "maintainer_email": null,
    "keywords": "active learning, molecular simulation, machine learning",
    "author": "Nicholas Herringer",
    "author_email": "nherringer@uchicago.edu",
    "download_url": "https://files.pythonhosted.org/packages/a9/81/10e41c6b06a91456a12ad7d0a914cbae7fafb186ffac2786e597511984bf/alpfore-0.1.5.tar.gz",
    "platform": null,
    "description": "# ALPineFOREst\n\n**A**ctive **L**earning **Pipel**ine **For** **Optima**l **Ranking Estimation**\n\n[![PyPI version](https://badge.fury.io/py/alpfore.svg)](https://pypi.org/project/alpfore/)\n\nALPineFOREst is a flexible, modular framework for conducting large-scale active learning campaigns in scientific and materials research. It supports molecular dynamics (MD)-based evaluations, customizable models (e.g., Gaussian Processes), and popular Bayesian optimization strategies like Thompson Sampling \u2014 all within a high-throughput, reproducible pipeline.\n\n---\n\n## Installation\n\nInstall via PyPI:\n```\npip install alpfore\n```\nOr to install from source:\n```\ngit clone https://github.com/nherringer/ALPineFOREst.git\ncd ALPineFOREst\npip install -e .\n```\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Active Learning Pipeline For Optimal Ranking Estimation",
    "version": "0.1.5",
    "project_urls": {
        "Homepage": "https://github.com/nherringer/ALPineFOREst",
        "Repository": "https://github.com/nherringer/ALPineFOREst"
    },
    "split_keywords": [
        "active learning",
        " molecular simulation",
        " machine learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7e5a9c9c5e9924d9bffde7168635dad826870931cff3f692ed3c47bd5b181a0e",
                "md5": "ae4eb91b02bad632b085b190aa22aff5",
                "sha256": "1e8d8e1cdf47146729b8fb390d4a825eb9fa0d317917d6a5effef4224ac2a060"
            },
            "downloads": -1,
            "filename": "alpfore-0.1.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ae4eb91b02bad632b085b190aa22aff5",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.7",
            "size": 29129,
            "upload_time": "2025-08-23T06:51:12",
            "upload_time_iso_8601": "2025-08-23T06:51:12.734644Z",
            "url": "https://files.pythonhosted.org/packages/7e/5a/9c9c5e9924d9bffde7168635dad826870931cff3f692ed3c47bd5b181a0e/alpfore-0.1.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a98110e41c6b06a91456a12ad7d0a914cbae7fafb186ffac2786e597511984bf",
                "md5": "0b73a9781c730f93deaff4ad7d672414",
                "sha256": "24789c81733e3ab0365c41c33961c3347d12795f2c239843b0beb79dc9b5dc26"
            },
            "downloads": -1,
            "filename": "alpfore-0.1.5.tar.gz",
            "has_sig": false,
            "md5_digest": "0b73a9781c730f93deaff4ad7d672414",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.7",
            "size": 21072,
            "upload_time": "2025-08-23T06:51:13",
            "upload_time_iso_8601": "2025-08-23T06:51:13.837653Z",
            "url": "https://files.pythonhosted.org/packages/a9/81/10e41c6b06a91456a12ad7d0a914cbae7fafb186ffac2786e597511984bf/alpfore-0.1.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-23 06:51:13",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "nherringer",
    "github_project": "ALPineFOREst",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "alpfore"
}
        
Elapsed time: 1.23889s