# ALPineFOREst
**A**ctive **L**earning **Pipel**ine **For** **Optima**l **Ranking Estimation**
[](https://pypi.org/project/alpfore/)
ALPineFOREst is a flexible, modular framework for conducting large-scale active learning campaigns in scientific and materials research. It supports molecular dynamics (MD)-based evaluations, customizable models (e.g., Gaussian Processes), and popular Bayesian optimization strategies like Thompson Sampling — all within a high-throughput, reproducible pipeline.
---
## Installation
Install via PyPI:
```
pip install alpfore
```
Or to install from source:
```
git clone https://github.com/nherringer/ALPineFOREst.git
cd ALPineFOREst
pip install -e .
```
Raw data
{
"_id": null,
"home_page": "https://github.com/nherringer/ALPineFOREst",
"name": "alpfore",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.7",
"maintainer_email": null,
"keywords": "active learning, molecular simulation, machine learning",
"author": "Nicholas Herringer",
"author_email": "nherringer@uchicago.edu",
"download_url": "https://files.pythonhosted.org/packages/b0/fb/972cfaa24ff03fb3516ed442b03f800a9f13427ad217865a5dbb589a296a/alpfore-0.1.6.tar.gz",
"platform": null,
"description": "# ALPineFOREst\n\n**A**ctive **L**earning **Pipel**ine **For** **Optima**l **Ranking Estimation**\n\n[](https://pypi.org/project/alpfore/)\n\nALPineFOREst is a flexible, modular framework for conducting large-scale active learning campaigns in scientific and materials research. It supports molecular dynamics (MD)-based evaluations, customizable models (e.g., Gaussian Processes), and popular Bayesian optimization strategies like Thompson Sampling \u2014 all within a high-throughput, reproducible pipeline.\n\n---\n\n## Installation\n\nInstall via PyPI:\n```\npip install alpfore\n```\nOr to install from source:\n```\ngit clone https://github.com/nherringer/ALPineFOREst.git\ncd ALPineFOREst\npip install -e .\n```\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Active Learning Pipeline For Optimal Ranking Estimation",
"version": "0.1.6",
"project_urls": {
"Homepage": "https://github.com/nherringer/ALPineFOREst",
"Repository": "https://github.com/nherringer/ALPineFOREst"
},
"split_keywords": [
"active learning",
" molecular simulation",
" machine learning"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "d6a8fb26dcc68913806123ced2673dc6174e77b196ee865869218a4a667cf064",
"md5": "50e1f4557eac8241ed37e4be8430942d",
"sha256": "103d89865c5f3030959454d9af60bc296801bde7c46e6a3f779e68943a7c3348"
},
"downloads": -1,
"filename": "alpfore-0.1.6-py3-none-any.whl",
"has_sig": false,
"md5_digest": "50e1f4557eac8241ed37e4be8430942d",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.7",
"size": 30448,
"upload_time": "2025-08-31T03:10:13",
"upload_time_iso_8601": "2025-08-31T03:10:13.522774Z",
"url": "https://files.pythonhosted.org/packages/d6/a8/fb26dcc68913806123ced2673dc6174e77b196ee865869218a4a667cf064/alpfore-0.1.6-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b0fb972cfaa24ff03fb3516ed442b03f800a9f13427ad217865a5dbb589a296a",
"md5": "ba3797059ae523e2b42f52a8f0f7b284",
"sha256": "b9c195279e39357fbd3e599ba5d03274b366236782916852c3f146b74d491dfe"
},
"downloads": -1,
"filename": "alpfore-0.1.6.tar.gz",
"has_sig": false,
"md5_digest": "ba3797059ae523e2b42f52a8f0f7b284",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.7",
"size": 22309,
"upload_time": "2025-08-31T03:10:14",
"upload_time_iso_8601": "2025-08-31T03:10:14.721792Z",
"url": "https://files.pythonhosted.org/packages/b0/fb/972cfaa24ff03fb3516ed442b03f800a9f13427ad217865a5dbb589a296a/alpfore-0.1.6.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-31 03:10:14",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "nherringer",
"github_project": "ALPineFOREst",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "alpfore"
}