[![PyPI version](https://badge.fury.io/py/alpha-automl.svg)](https://pypi.org/project/alpha-automl/0.2.0/)
[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
[![Tests](https://github.com/VIDA-NYU/alpha-automl/actions/workflows/build.yml/badge.svg)](https://github.com/VIDA-NYU/alpha-automl/actions/workflows/build.yml)
[![Documentation Status](https://readthedocs.org/projects/alpha-automl/badge/?version=latest)](https://alpha-automl.readthedocs.io/en/latest/?badge=latest)
<img src="https://github.com/VIDA-NYU/alpha-automl/raw/devel/Alpha-AutoML_logo.png" width=30%>
Alpha-AutoML is an AutoML system that automatically searches for models and derives end-to-end pipelines that read,
pre-process the data, and train the model. Alpha-AutoML leverages recent advances in deep reinforcement learning and is
able to adapt to different application domains and problems through incremental learning.
Alpha-AutoML provides data scientists and data engineers the flexibility to address complex problems by leveraging the
Python ecosystem, including open-source libraries and tools, support for collaboration, and infrastructure that enables
transparency and reproducibility.
This repository is part of New York University's implementation of the
[Data Driven Discovery project (D3M)](https://datadrivendiscovery.org/).
## Documentation
Documentation is available [here.](https://alpha-automl.readthedocs.io/)
## Installation
This package works with Python 3.6+ in Linux, Mac, and Windows.
You can install the latest stable version of this library from [PyPI](https://pypi.org/project/alpha-automl/):
```
pip install alpha-automl
```
To install the latest development version:
```
pip install git+https://github.com/VIDA-NYU/alpha-automl@devel
```
## Trying it using Docker
We provide pre-built docker images with Jupyter and Alpha-AutoML pre-installed that you can use to quickly test Alpha-AutoML.
To test it, you can run the following command in your machine, and open Jupyter Notebook on your browser:
```
docker run -p 8888:8888 ghcr.io/vida-nyu/alpha-automl
```
Using this command, Jupyter Notebook will auto-generate a security token. The correct URL to access the Jupyter will be printed in the console output and will look like: `http://127.0.0.1:8888/?token=70ace7fa017c35ba0134dc7931add12bf55a69d4d4e6e54f`.
Alternatively, if you want to provide a custom security token, you can run:
```
docker run -p 8888:8888 -e JUPYTER_TOKEN="<my-token>" ghcr.io/vida-nyu/alpha-automl
```
If you are running the Jupyter Notebook in a secure environment, the authentication can be disabled as follows:
```
docker run -p 8888:8888 ghcr.io/vida-nyu/alpha-automl --NotebookApp.token=''
```
## Building a Docker image from scratch
If you need to build an image from sources, you can use our [Dockerfile](https://github.com/VIDA-NYU/alpha-automl/blob/devel/Dockerfile). You can use a docker-build argument to select the packages that will be installed in the image (e.g., `full`, `timeseries`, `nlp`, etc) as follows:
```
docker build -t alpha-automl --build-arg BUILD_OPTION=full .
```
Or simply a base version using (this will use less disk space but will not provide support for some tasks such as NLP and timeseries):
```
docker build -t alpha-automl:latest --target alpha-automl .
```
You can also build an image to use with JupyterHub as follows:
```
docker build -t alpha-automl:latest-jupyterhub --target alpha-automl-jupyterhub .
```
See also the documentation on how to setup Alpha-AutoML + JupyterHub on [Kubernetes](https://github.com/VIDA-NYU/alpha-automl/tree/devel/kubernetes).
Raw data
{
"_id": null,
"home_page": "https://github.com/VIDA-NYU/alpha-automl",
"name": "alpha-automl",
"maintainer": "Roque Lopez, Eden Wu, A\u00e9cio Santos, Remi Rampin",
"docs_url": null,
"requires_python": "",
"maintainer_email": "rlopez@nyu.edu, eden.wu@nyu.edu, aecio.santos@nyu.edu, remi.rampin@nyu.edu",
"keywords": "datadrivendiscovery,automl,nyu",
"author": "Roque Lopez, Eden Wu, A\u00e9cio Santos, Remi Rampin",
"author_email": "rlopez@nyu.edu, eden.wu@nyu.edu, aecio.santos@nyu.edu, remi.rampin@nyu.edu",
"download_url": "https://files.pythonhosted.org/packages/1b/a4/683b7db7822787f05047586b2edfef5f3293d76c673cad94e2b36b744fa3/alpha-automl-0.3.0.tar.gz",
"platform": null,
"description": "[![PyPI version](https://badge.fury.io/py/alpha-automl.svg)](https://pypi.org/project/alpha-automl/0.2.0/)\n[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)\n[![Tests](https://github.com/VIDA-NYU/alpha-automl/actions/workflows/build.yml/badge.svg)](https://github.com/VIDA-NYU/alpha-automl/actions/workflows/build.yml)\n[![Documentation Status](https://readthedocs.org/projects/alpha-automl/badge/?version=latest)](https://alpha-automl.readthedocs.io/en/latest/?badge=latest)\n\n\n<img src=\"https://github.com/VIDA-NYU/alpha-automl/raw/devel/Alpha-AutoML_logo.png\" width=30%>\n\n\nAlpha-AutoML is an AutoML system that automatically searches for models and derives end-to-end pipelines that read, \npre-process the data, and train the model. Alpha-AutoML leverages recent advances in deep reinforcement learning and is \nable to adapt to different application domains and problems through incremental learning.\n\nAlpha-AutoML provides data scientists and data engineers the flexibility to address complex problems by leveraging the \nPython ecosystem, including open-source libraries and tools, support for collaboration, and infrastructure that enables \ntransparency and reproducibility. \n\nThis repository is part of New York University's implementation of the \n[Data Driven Discovery project (D3M)](https://datadrivendiscovery.org/).\n\n\n## Documentation\n\nDocumentation is available [here.](https://alpha-automl.readthedocs.io/)\n\n\n## Installation\n\nThis package works with Python 3.6+ in Linux, Mac, and Windows.\n\nYou can install the latest stable version of this library from [PyPI](https://pypi.org/project/alpha-automl/):\n\n```\npip install alpha-automl\n```\n\nTo install the latest development version:\n\n```\npip install git+https://github.com/VIDA-NYU/alpha-automl@devel\n```\n\n\n## Trying it using Docker\n\nWe provide pre-built docker images with Jupyter and Alpha-AutoML pre-installed that you can use to quickly test Alpha-AutoML.\nTo test it, you can run the following command in your machine, and open Jupyter Notebook on your browser:\n\n```\ndocker run -p 8888:8888 ghcr.io/vida-nyu/alpha-automl\n```\nUsing this command, Jupyter Notebook will auto-generate a security token. The correct URL to access the Jupyter will be printed in the console output and will look like: `http://127.0.0.1:8888/?token=70ace7fa017c35ba0134dc7931add12bf55a69d4d4e6e54f`.\n\nAlternatively, if you want to provide a custom security token, you can run:\n```\ndocker run -p 8888:8888 -e JUPYTER_TOKEN=\"<my-token>\" ghcr.io/vida-nyu/alpha-automl\n```\n\nIf you are running the Jupyter Notebook in a secure environment, the authentication can be disabled as follows:\n```\ndocker run -p 8888:8888 ghcr.io/vida-nyu/alpha-automl --NotebookApp.token=''\n```\n\n## Building a Docker image from scratch\n\nIf you need to build an image from sources, you can use our [Dockerfile](https://github.com/VIDA-NYU/alpha-automl/blob/devel/Dockerfile). You can use a docker-build argument to select the packages that will be installed in the image (e.g., `full`, `timeseries`, `nlp`, etc) as follows:\n\n```\ndocker build -t alpha-automl --build-arg BUILD_OPTION=full .\n```\n\nOr simply a base version using (this will use less disk space but will not provide support for some tasks such as NLP and timeseries):\n```\ndocker build -t alpha-automl:latest --target alpha-automl .\n```\n\nYou can also build an image to use with JupyterHub as follows:\n```\ndocker build -t alpha-automl:latest-jupyterhub --target alpha-automl-jupyterhub .\n```\nSee also the documentation on how to setup Alpha-AutoML + JupyterHub on [Kubernetes](https://github.com/VIDA-NYU/alpha-automl/tree/devel/kubernetes).\n\n",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "Alpha-AutoML: NYU's AutoML System",
"version": "0.3.0",
"project_urls": {
"Homepage": "https://github.com/VIDA-NYU/alpha-automl"
},
"split_keywords": [
"datadrivendiscovery",
"automl",
"nyu"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "873c23cc30a94b6efa28116ef1f3864b36d6effd066cdff1b9548bab51bb9609",
"md5": "7040df097c6c026f0bea55dd72754300",
"sha256": "0a72d26fff3968a28a4ae8f71f4c56fa771aa432948479da31c3fa0881bd41dd"
},
"downloads": -1,
"filename": "alpha_automl-0.3.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "7040df097c6c026f0bea55dd72754300",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 68742,
"upload_time": "2023-11-18T03:33:17",
"upload_time_iso_8601": "2023-11-18T03:33:17.724936Z",
"url": "https://files.pythonhosted.org/packages/87/3c/23cc30a94b6efa28116ef1f3864b36d6effd066cdff1b9548bab51bb9609/alpha_automl-0.3.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1ba4683b7db7822787f05047586b2edfef5f3293d76c673cad94e2b36b744fa3",
"md5": "39ed5d15fe953f8b08ecef3a4dd0488f",
"sha256": "13c3954f3c97c2c48be5c33692b4d0e382d15e11a97ac5ea36bde12e5d0a7527"
},
"downloads": -1,
"filename": "alpha-automl-0.3.0.tar.gz",
"has_sig": false,
"md5_digest": "39ed5d15fe953f8b08ecef3a4dd0488f",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 58918,
"upload_time": "2023-11-18T03:33:19",
"upload_time_iso_8601": "2023-11-18T03:33:19.539326Z",
"url": "https://files.pythonhosted.org/packages/1b/a4/683b7db7822787f05047586b2edfef5f3293d76c673cad94e2b36b744fa3/alpha-automl-0.3.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-11-18 03:33:19",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "VIDA-NYU",
"github_project": "alpha-automl",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "alpha-automl"
}