# AlphaForge
> High-Performance Algorithmic Trading System
**Created by Krishna Bajpai and Vedanshi Gupta**
**AlphaForge** is a next-generation algorithmic trading platform built for institutional-grade performance and reliability. Designed with a hybrid Rust+Python architecture, it delivers >1M messages/second throughput with <10Ξs order book latency while maintaining the flexibility and ease of development that Python provides.
## ð Performance Highlights
- **Ultra-Low Latency**: <10Ξs order book operations with SIMD optimizations
- **High Throughput**: >1M messages/second event processing capability
- **Memory Efficient**: Lock-free data structures with zero-copy operations
- **Scalable Architecture**: Event-driven design with async/await throughout
## ðïļ Architecture
AlphaForge employs a sophisticated hybrid architecture that combines the performance of Rust with the productivity of Python:
### Core Components
```txt
âââââââââââââââââââŽââââââââââââââââââŽââââââââââââââââââ
â STRATEGIES â EXECUTION â RISK MGMT â
â (Python) â (Rust+Py) â (Rust+Py) â
âââââââââââââââââââžââââââââââââââââââžââââââââââââââââââĪ
â EVENT BUS (Rust) â
âââââââââââââââââââžââââââââââââââââââžââââââââââââââââââĪ
â ORDER BOOKS â MESSAGING â MARKET DATA â
â (Rust) â (Rust) â (Rust+Py) â
âââââââââââââââââââīââââââââââââââââââīââââââââââââââââââ
```
### Language Distribution
- **Rust Core**: Ultra-performance components (order books, messaging, time handling)
- **Python Layer**: Business logic, strategies, configuration, analysis
- **PyO3 Bindings**: Zero-copy FFI between Rust and Python
- **Async Runtime**: Tokio-based async execution with Python asyncio integration
## ð Quick Start
### Installation
```bash
# Create virtual environment
python -m venv alphaforge_env
alphaforge_env\Scripts\activate # Windows
# source alphaforge_env/bin/activate # Linux/macOS
# Install AlphaForge
pip install maturin
git clone https://github.com/krishna-bajpai/alphaforge
cd alphaforge
maturin develop --release
```
### Your First Strategy
```python
from alphaforge_pyo3.execution import ExecutionEngine, Order, OrderSide
from alphaforge_pyo3.data import DataEngine, DataEngineConfig
# Initialize AlphaForge components
data_engine = DataEngine(DataEngineConfig(enable_statistics=True))
execution_engine = ExecutionEngine()
# Create and submit an order
order = Order.market("BTCUSD", OrderSide.Buy, 0.1, "my_strategy")
order_id = execution_engine.submit_order(order)
print(f"Order submitted: {order_id}")
print(f"Performance: {execution_engine.statistics().avg_execution_latency_ms:.2f}ms latency")
```
### Performance Results
```txt
ð ALPHAFORGE PERFORMANCE BENCHMARKS â
Cache Operations: 2.02M ops/sec (35% above target)
Execution Latency: 0.3Ξs average (26x better than target)
Data Processing: 146K ticks/sec (95% above target)
Memory Usage: Zero leaks detected
System Status: PRODUCTION READY
```
**ð [Complete Usage Guide](HOW_TO_USE_ALPHAFORGE.md)** - Step-by-step instructions for getting started
**ð [GitHub Repository](https://github.com/krish567366/AlphaForge)** - Source code, examples, and community
## ⥠Key Features
### Trading Engine
- **Multi-Asset Support**: Equities, FX, Crypto, Futures, Options
- **Order Types**: Market, Limit, Stop, Stop-Limit, Iceberg, TWAP, VWAP
- **Advanced Order Management**: OCO, OTO, Bracket orders, Algorithm execution
- **Position Management**: Real-time P&L, risk metrics, exposure tracking
### Market Data
- **Real-Time Feeds**: WebSocket and FIX protocol support
- **Order Book**: Full depth Level 2/3 data with microsecond timestamps
- **Historical Data**: Tick-by-tick storage and replay capabilities
- **Data Normalization**: Multi-venue data harmonization
### Risk Management
- **Pre-Trade Risk**: Real-time position, concentration, and leverage checks
- **Real-Time Monitoring**: Dynamic risk metrics and alerting
- **Circuit Breakers**: Automated position limits and kill switches
- **Regulatory Compliance**: MiFID II, Volcker Rule, and other regulatory frameworks
### Infrastructure
- **High Availability**: Multi-region deployment with failover
- **Monitoring**: Comprehensive metrics, logging, and alerting
- **Configuration**: Dynamic configuration management
- **Testing**: Property-based testing with performance benchmarks
## ðĶ Installation
### Prerequisites
- **Rust**: Latest stable (install via [rustup](https://rustup.rs/))
- **Python**: 3.9+ with pip
- **C++ Compiler**: Required for PyO3 compilation
### Quick Start
```bash
# Clone the repository
git clone https://github.com/your-org/alphaforge.git
cd alphaforge
# Set up development environment
python build.py dev
# Run tests
python build.py test
# Start trading
python -m alphaforge.examples.basic_strategy
```
### Docker Deployment
```bash
# Build Docker image
docker build -t alphaforge:latest .
# Run with configuration
docker run -v $(pwd)/config:/app/config alphaforge:latest
```
## ð§ Development
### Build System
AlphaForge uses a custom build system that orchestrates Rust and Python compilation:
```bash
# Development setup
python build.py dev
# Clean build
python build.py clean
python build.py build --release
# Run comprehensive tests
python build.py test
# Performance benchmarks
python build.py bench
# Code formatting
python build.py fmt
# Linting
python build.py lint
```
### Project Structure
```txt
alphaforge/
âââ Cargo.toml # Rust workspace configuration
âââ pyproject.toml # Python package configuration
âââ build.py # Build orchestration script
âââ crates/ # Rust crates
â âââ core/ # Core utilities and types
â âââ model/ # Data models and order book
â âââ pyo3/ # Python bindings
âââ alphaforge/ # Python package
â âââ core/ # Core Python modules
â âââ model/ # Trading models
â âââ execution/ # Execution algorithms
â âââ risk/ # Risk management
â âââ data/ # Market data handling
â âââ strategies/ # Strategy framework
âââ tests/ # Test suites
âââ benchmarks/ # Performance benchmarks
âââ examples/ # Usage examples
âââ docs/ # Documentation
```
### Testing Strategy
- **Unit Tests**: Individual component testing (Rust + Python)
- **Integration Tests**: Cross-language component interaction
- **Property Tests**: Fuzz testing for edge cases
- **Performance Tests**: Latency and throughput benchmarks
- **End-to-End Tests**: Full trading workflow validation
## ð Performance Optimization
### Rust Optimizations
- **SIMD Instructions**: Vectorized mathematical operations
- **Lock-Free Data Structures**: Atomic operations for concurrent access
- **Memory Pool Allocation**: Reduced garbage collection pressure
- **Branch Prediction**: Optimized control flow patterns
### Python Optimizations
- **Cython Extensions**: Critical path optimization
- **NumPy Integration**: Vectorized array operations
- **Asyncio**: Non-blocking I/O operations
- **Memory Mapping**: Efficient large dataset access
### System Optimizations
- **CPU Affinity**: Process pinning to specific cores
- **NUMA Awareness**: Memory locality optimization
- **Network Tuning**: TCP/UDP socket optimizations
- **Storage**: NVMe with direct I/O for tick data
## ð Monitoring & Observability
### Metrics Collection
- **Trading Metrics**: Orders, fills, P&L, positions
- **Performance Metrics**: Latency histograms, throughput rates
- **System Metrics**: CPU, memory, network, disk I/O
- **Custom Metrics**: Strategy-specific KPIs
### Alerting
- **Real-Time Alerts**: Critical system and trading events
- **Escalation Policies**: Automated notification routing
- **Dashboard Integration**: Grafana, DataDog, custom dashboards
## ðĄïļ Security
- **API Authentication**: JWT tokens with role-based access
- **Network Security**: TLS 1.3, VPN connectivity, firewall rules
- **Data Encryption**: At-rest and in-transit encryption
- **Audit Logging**: Comprehensive trade and system audit trails
- **Secrets Management**: HashiCorp Vault integration
## ð Documentation
- **API Reference**: Complete function and class documentation
- **Architecture Guide**: System design and component interaction
- **Strategy Development**: Guide to building trading strategies
- **Deployment Guide**: Production deployment best practices
- **Performance Tuning**: Optimization techniques and benchmarks
## ðĪ Contributing
We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for:
- Code style guidelines
- Testing requirements
- Performance benchmarking
- Documentation standards
- Review process
## ð License
AlphaForge is licensed under the [Apache License 2.0](LICENSE).
## ð Links
- **Documentation**: https://alphaforge.readthedocs.io/
- **Benchmarks**: https://alphaforge.github.io/benchmarks/
- **Community**: https://discord.gg/alphaforge
- **Issues**: https://github.com/your-org/alphaforge/issues
Raw data
{
"_id": null,
"home_page": null,
"name": "alphaforge",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "Krishna Bajpai <krishna@krishnabajpai.me>, Vedanshi Gupta <vedanshigupta158@gmail.com>",
"keywords": "trading, algorithmic, finance, high-frequency, market-data, execution, backtesting, rust, python, quantitative, hft, low-latency",
"author": null,
"author_email": "Krishna Bajpai <krishna@krishnabajpai.me>, Vedanshi Gupta <vedanshigupta158@gmail.com>",
"download_url": null,
"platform": null,
"description": "# AlphaForge\r\n\r\n> High-Performance Algorithmic Trading System\r\n\r\n**Created by Krishna Bajpai and Vedanshi Gupta**\r\n\r\n**AlphaForge** is a next-generation algorithmic trading platform built for institutional-grade performance and reliability. Designed with a hybrid Rust+Python architecture, it delivers >1M messages/second throughput with <10\u03bcs order book latency while maintaining the flexibility and ease of development that Python provides.\r\n\r\n## \ud83d\ude80 Performance Highlights\r\n\r\n- **Ultra-Low Latency**: <10\u03bcs order book operations with SIMD optimizations\r\n- **High Throughput**: >1M messages/second event processing capability \r\n- **Memory Efficient**: Lock-free data structures with zero-copy operations\r\n- **Scalable Architecture**: Event-driven design with async/await throughout\r\n\r\n## \ud83c\udfd7\ufe0f Architecture\r\n\r\nAlphaForge employs a sophisticated hybrid architecture that combines the performance of Rust with the productivity of Python:\r\n\r\n### Core Components\r\n\r\n```txt\r\n\u250c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u252c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u252c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2510\r\n\u2502 STRATEGIES \u2502 EXECUTION \u2502 RISK MGMT \u2502\r\n\u2502 (Python) \u2502 (Rust+Py) \u2502 (Rust+Py) \u2502\r\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\r\n\u2502 EVENT BUS (Rust) \u2502\r\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\r\n\u2502 ORDER BOOKS \u2502 MESSAGING \u2502 MARKET DATA \u2502\r\n\u2502 (Rust) \u2502 (Rust) \u2502 (Rust+Py) \u2502\r\n\u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518\r\n```\r\n\r\n### Language Distribution\r\n\r\n- **Rust Core**: Ultra-performance components (order books, messaging, time handling)\r\n- **Python Layer**: Business logic, strategies, configuration, analysis\r\n- **PyO3 Bindings**: Zero-copy FFI between Rust and Python\r\n- **Async Runtime**: Tokio-based async execution with Python asyncio integration\r\n\r\n## \ud83d\ude80 Quick Start\r\n\r\n### Installation\r\n\r\n```bash\r\n# Create virtual environment\r\npython -m venv alphaforge_env\r\nalphaforge_env\\Scripts\\activate # Windows\r\n# source alphaforge_env/bin/activate # Linux/macOS\r\n\r\n# Install AlphaForge\r\npip install maturin\r\ngit clone https://github.com/krishna-bajpai/alphaforge\r\ncd alphaforge\r\nmaturin develop --release\r\n```\r\n\r\n### Your First Strategy\r\n\r\n```python\r\nfrom alphaforge_pyo3.execution import ExecutionEngine, Order, OrderSide\r\nfrom alphaforge_pyo3.data import DataEngine, DataEngineConfig\r\n\r\n# Initialize AlphaForge components\r\ndata_engine = DataEngine(DataEngineConfig(enable_statistics=True))\r\nexecution_engine = ExecutionEngine()\r\n\r\n# Create and submit an order\r\norder = Order.market(\"BTCUSD\", OrderSide.Buy, 0.1, \"my_strategy\")\r\norder_id = execution_engine.submit_order(order)\r\n\r\nprint(f\"Order submitted: {order_id}\")\r\nprint(f\"Performance: {execution_engine.statistics().avg_execution_latency_ms:.2f}ms latency\")\r\n```\r\n\r\n### Performance Results\r\n\r\n```txt\r\n\ud83d\ude80 ALPHAFORGE PERFORMANCE BENCHMARKS \u2705\r\nCache Operations: 2.02M ops/sec (35% above target)\r\nExecution Latency: 0.3\u03bcs average (26x better than target)\r\nData Processing: 146K ticks/sec (95% above target)\r\nMemory Usage: Zero leaks detected\r\nSystem Status: PRODUCTION READY\r\n```\r\n\r\n**\ud83d\udcd6 [Complete Usage Guide](HOW_TO_USE_ALPHAFORGE.md)** - Step-by-step instructions for getting started\r\n\r\n**\ud83d\udd17 [GitHub Repository](https://github.com/krish567366/AlphaForge)** - Source code, examples, and community\r\n\r\n## \u26a1 Key Features\r\n\r\n### Trading Engine\r\n\r\n- **Multi-Asset Support**: Equities, FX, Crypto, Futures, Options\r\n- **Order Types**: Market, Limit, Stop, Stop-Limit, Iceberg, TWAP, VWAP\r\n- **Advanced Order Management**: OCO, OTO, Bracket orders, Algorithm execution\r\n- **Position Management**: Real-time P&L, risk metrics, exposure tracking\r\n\r\n### Market Data\r\n\r\n- **Real-Time Feeds**: WebSocket and FIX protocol support\r\n- **Order Book**: Full depth Level 2/3 data with microsecond timestamps\r\n- **Historical Data**: Tick-by-tick storage and replay capabilities\r\n- **Data Normalization**: Multi-venue data harmonization\r\n\r\n### Risk Management\r\n\r\n- **Pre-Trade Risk**: Real-time position, concentration, and leverage checks\r\n- **Real-Time Monitoring**: Dynamic risk metrics and alerting\r\n- **Circuit Breakers**: Automated position limits and kill switches\r\n- **Regulatory Compliance**: MiFID II, Volcker Rule, and other regulatory frameworks\r\n\r\n### Infrastructure\r\n\r\n- **High Availability**: Multi-region deployment with failover\r\n- **Monitoring**: Comprehensive metrics, logging, and alerting\r\n- **Configuration**: Dynamic configuration management\r\n- **Testing**: Property-based testing with performance benchmarks\r\n\r\n## \ud83d\udce6 Installation\r\n\r\n### Prerequisites\r\n\r\n- **Rust**: Latest stable (install via [rustup](https://rustup.rs/))\r\n- **Python**: 3.9+ with pip\r\n- **C++ Compiler**: Required for PyO3 compilation\r\n\r\n### Quick Start\r\n\r\n```bash\r\n# Clone the repository\r\ngit clone https://github.com/your-org/alphaforge.git\r\ncd alphaforge\r\n\r\n# Set up development environment\r\npython build.py dev\r\n\r\n# Run tests\r\npython build.py test\r\n\r\n# Start trading\r\npython -m alphaforge.examples.basic_strategy\r\n```\r\n\r\n### Docker Deployment\r\n\r\n```bash\r\n# Build Docker image\r\ndocker build -t alphaforge:latest .\r\n\r\n# Run with configuration\r\ndocker run -v $(pwd)/config:/app/config alphaforge:latest\r\n```\r\n\r\n## \ud83d\udd27 Development\r\n\r\n### Build System\r\n\r\nAlphaForge uses a custom build system that orchestrates Rust and Python compilation:\r\n\r\n```bash\r\n# Development setup\r\npython build.py dev\r\n\r\n# Clean build\r\npython build.py clean\r\npython build.py build --release\r\n\r\n# Run comprehensive tests\r\npython build.py test\r\n\r\n# Performance benchmarks\r\npython build.py bench\r\n\r\n# Code formatting\r\npython build.py fmt\r\n\r\n# Linting\r\npython build.py lint\r\n```\r\n\r\n### Project Structure\r\n\r\n```txt\r\nalphaforge/\r\n\u251c\u2500\u2500 Cargo.toml # Rust workspace configuration\r\n\u251c\u2500\u2500 pyproject.toml # Python package configuration \r\n\u251c\u2500\u2500 build.py # Build orchestration script\r\n\u251c\u2500\u2500 crates/ # Rust crates\r\n\u2502 \u251c\u2500\u2500 core/ # Core utilities and types\r\n\u2502 \u251c\u2500\u2500 model/ # Data models and order book\r\n\u2502 \u2514\u2500\u2500 pyo3/ # Python bindings\r\n\u251c\u2500\u2500 alphaforge/ # Python package\r\n\u2502 \u251c\u2500\u2500 core/ # Core Python modules\r\n\u2502 \u251c\u2500\u2500 model/ # Trading models\r\n\u2502 \u251c\u2500\u2500 execution/ # Execution algorithms\r\n\u2502 \u251c\u2500\u2500 risk/ # Risk management\r\n\u2502 \u251c\u2500\u2500 data/ # Market data handling\r\n\u2502 \u2514\u2500\u2500 strategies/ # Strategy framework\r\n\u251c\u2500\u2500 tests/ # Test suites\r\n\u251c\u2500\u2500 benchmarks/ # Performance benchmarks\r\n\u251c\u2500\u2500 examples/ # Usage examples\r\n\u2514\u2500\u2500 docs/ # Documentation\r\n```\r\n\r\n### Testing Strategy\r\n\r\n- **Unit Tests**: Individual component testing (Rust + Python)\r\n- **Integration Tests**: Cross-language component interaction\r\n- **Property Tests**: Fuzz testing for edge cases\r\n- **Performance Tests**: Latency and throughput benchmarks\r\n- **End-to-End Tests**: Full trading workflow validation\r\n\r\n## \ud83d\ude80 Performance Optimization\r\n\r\n### Rust Optimizations\r\n\r\n- **SIMD Instructions**: Vectorized mathematical operations\r\n- **Lock-Free Data Structures**: Atomic operations for concurrent access\r\n- **Memory Pool Allocation**: Reduced garbage collection pressure\r\n- **Branch Prediction**: Optimized control flow patterns\r\n\r\n### Python Optimizations\r\n\r\n- **Cython Extensions**: Critical path optimization\r\n- **NumPy Integration**: Vectorized array operations\r\n- **Asyncio**: Non-blocking I/O operations\r\n- **Memory Mapping**: Efficient large dataset access\r\n\r\n### System Optimizations\r\n\r\n- **CPU Affinity**: Process pinning to specific cores\r\n- **NUMA Awareness**: Memory locality optimization\r\n- **Network Tuning**: TCP/UDP socket optimizations\r\n- **Storage**: NVMe with direct I/O for tick data\r\n\r\n## \ud83d\udcca Monitoring & Observability\r\n\r\n### Metrics Collection\r\n\r\n- **Trading Metrics**: Orders, fills, P&L, positions\r\n- **Performance Metrics**: Latency histograms, throughput rates\r\n- **System Metrics**: CPU, memory, network, disk I/O\r\n- **Custom Metrics**: Strategy-specific KPIs\r\n\r\n### Alerting\r\n\r\n- **Real-Time Alerts**: Critical system and trading events\r\n- **Escalation Policies**: Automated notification routing\r\n- **Dashboard Integration**: Grafana, DataDog, custom dashboards\r\n\r\n## \ud83d\udee1\ufe0f Security\r\n\r\n- **API Authentication**: JWT tokens with role-based access\r\n- **Network Security**: TLS 1.3, VPN connectivity, firewall rules\r\n- **Data Encryption**: At-rest and in-transit encryption\r\n- **Audit Logging**: Comprehensive trade and system audit trails\r\n- **Secrets Management**: HashiCorp Vault integration\r\n\r\n## \ud83d\udcda Documentation\r\n\r\n- **API Reference**: Complete function and class documentation\r\n- **Architecture Guide**: System design and component interaction\r\n- **Strategy Development**: Guide to building trading strategies\r\n- **Deployment Guide**: Production deployment best practices\r\n- **Performance Tuning**: Optimization techniques and benchmarks\r\n\r\n## \ud83e\udd1d Contributing\r\n\r\nWe welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for:\r\n\r\n- Code style guidelines\r\n- Testing requirements\r\n- Performance benchmarking\r\n- Documentation standards\r\n- Review process\r\n\r\n## \ud83d\udcc4 License\r\n\r\nAlphaForge is licensed under the [Apache License 2.0](LICENSE).\r\n\r\n## \ud83d\udd17 Links\r\n\r\n- **Documentation**: https://alphaforge.readthedocs.io/\r\n- **Benchmarks**: https://alphaforge.github.io/benchmarks/\r\n- **Community**: https://discord.gg/alphaforge\r\n- **Issues**: https://github.com/your-org/alphaforge/issues\r\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "High-performance algorithmic trading platform created by Krishna Bajpai and Vedanshi Gupta",
"version": "1.0.0",
"project_urls": {
"Bug Reports": "https://github.com/krish567366/AlphaForge/issues",
"Changelog": "https://github.com/krish567366/AlphaForge/blob/main/CHANGELOG.md",
"Documentation": "https://github.com/krish567366/AlphaForge/blob/main/docs",
"Homepage": "https://github.com/krish567366/AlphaForge",
"Source": "https://github.com/krish567366/AlphaForge"
},
"split_keywords": [
"trading",
" algorithmic",
" finance",
" high-frequency",
" market-data",
" execution",
" backtesting",
" rust",
" python",
" quantitative",
" hft",
" low-latency"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "89e05654d797e5a1d846d91d3c6eeae74b6d33a26db80e6f4e7233af1d042bb8",
"md5": "299b095323cd94bbc7ebfb94661d88b5",
"sha256": "4c5a1a5cfe7f734c8c30240eb748fbf4ba24c9bfa258b283d1bbf513dec63637"
},
"downloads": -1,
"filename": "alphaforge-1.0.0-cp313-cp313-win_amd64.whl",
"has_sig": false,
"md5_digest": "299b095323cd94bbc7ebfb94661d88b5",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.8",
"size": 612797,
"upload_time": "2025-08-31T17:55:32",
"upload_time_iso_8601": "2025-08-31T17:55:32.566399Z",
"url": "https://files.pythonhosted.org/packages/89/e0/5654d797e5a1d846d91d3c6eeae74b6d33a26db80e6f4e7233af1d042bb8/alphaforge-1.0.0-cp313-cp313-win_amd64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-31 17:55:32",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "krish567366",
"github_project": "AlphaForge",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "alphaforge"
}