alphalens-tej


Namealphalens-tej JSON
Version 2.0.2 PyPI version JSON
download
home_page
SummaryPerformance analysis of predictive (alpha) stock factors
upload_time2024-03-13 07:19:24
maintainertej
docs_urlNone
authortej
requires_python>=3.8
licenseApache-2.0
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <p align="center">
<a href="https://alphalens.ml4trading.io">
<img src="https://i.imgur.com/uf8PmQO.png" width="35%">
</a>
</p>

![PyPI](https://img.shields.io/pypi/v/alphalens-reloaded)
[![Anaconda](https://github.com/stefan-jansen/alphalens-reloaded/actions/workflows/conda_package.yml/badge.svg)](https://github.com/stefan-jansen/alphalens-reloaded/actions/workflows/conda_package.yml)
[![Tests](https://github.com/stefan-jansen/alphalens-reloaded/actions/workflows/unit_tests.yml/badge.svg)](https://github.com/stefan-jansen/alphalens-reloaded/actions/workflows/unit_tests.yml)
[![PyPI](https://github.com/stefan-jansen/alphalens-reloaded/actions/workflows/build_wheels.yml/badge.svg)](https://github.com/stefan-jansen/alphalens-reloaded/actions/workflows/build_wheels.yml)
[![Coverage Status](https://coveralls.io/repos/github/stefan-jansen/alphalens-reloaded/badge.svg?branch=main)](https://coveralls.io/github/stefan-jansen/alphalens-reloaded?branch=main)
![GitHub issues](https://img.shields.io/github/issues/stefan-jansen/alphalens-reloaded)
![PyPI - License](https://img.shields.io/pypi/l/alphalens-reloaded)
![Discourse users](https://img.shields.io/discourse/users?server=https%3A%2F%2Fexchange.ml4trading.io%2F)
![Twitter Follow](https://img.shields.io/twitter/follow/ml4trading?style=social)

Alphalens is a Python library for performance analysis of predictive
(alpha) stock factors. Alphalens works great with the
[Zipline](https://www.zipline.ml4trading.io/) open source backtesting library, and [Pyfolio](https://github.com/quantopian/pyfolio) which provides performance and risk analysis of financial portfolios.

The main function of Alphalens is to surface the most relevant statistics and plots about an alpha factor, including:

- Returns Analysis
- Information Coefficient Analysis
- Turnover Analysis
- Grouped Analysis

# Getting started

With a signal and pricing data creating a factor \"tear sheet\" is a two step process:

```python
import alphalens

# Ingest and format data
factor_data = alphalens.utils.get_clean_factor_and_forward_returns(my_factor,
                                                                   pricing,
                                                                   quantiles=5,
                                                                   groupby=ticker_sector,
                                                                   groupby_labels=sector_names)

# Run analysis
alphalens.tears.create_full_tear_sheet(factor_data)
```

# Learn more

Check out the [example notebooks](https://github.com/stefan-jansen/alphalens-reloaded/tree/master/alphalens/examples)
for more on how to read and use the factor tear sheet.

# Installation

Install with pip:

    pip install alphalens-reloaded

Install with conda:

    conda install -c ml4t alphalens-reloaded

Install from the master branch of Alphalens repository (development code):

    pip install git+https://github.com/stefan-jansen/alphalens-reloaded

Alphalens depends on:

- [matplotlib](https://github.com/matplotlib/matplotlib)
- [numpy](https://github.com/numpy/numpy)
- [pandas](https://github.com/pandas-dev/pandas)
- [scipy](https://github.com/scipy/scipy)
- [seaborn](https://github.com/mwaskom/seaborn)
- [statsmodels](https://github.com/statsmodels/statsmodels)

# Usage

A good way to get started is to run the examples in a [Jupyter notebook](https://jupyter.org/).

To get set up with an example, you can:

Run a Jupyter notebook server via:

```bash
jupyter notebook
```

From the notebook list page(usually found at `http://localhost:8888/`), navigate over to the examples directory, and open any file with a .ipynb extension.

Execute the code in a notebook cell by clicking on it and hitting Shift+Enter.

# Questions?

If you find a bug, feel free to open an issue on our [github tracker](https://github.com/stefan-jansen/alphalens-reloaded/issues).

# Contribute

If you want to contribute, a great place to start would be the
[help-wanted issues](https://github.com/stefan-jansen/alphalens-reloaded/issues?q=is%3Aopen+is%3Aissue+label%3A%22help+wanted%22).

# Credits

- [Andrew Campbell](https://github.com/a-campbell)
- [James Christopher](https://github.com/jameschristopher)
- [Thomas Wiecki](https://github.com/twiecki)
- [Jonathan Larkin](https://github.com/marketneutral)
- Jessica Stauth (<jstauth@quantopian.com>)
- [Taso Petridis](https://github.com/tasopetridis)

For a full list of contributors see the [contributors page.](https://github.com/stefan-jansen/alphalens-reloaded/graphs/contributors)

# Example Tear Sheets

Example factor courtesy of [ExtractAlpha](https://extractalpha.com/)

## Peformance Metrics Tables

![image](https://i.imgur.com/4T8cziG.png)

## Returns Tear Sheet

![image](https://i.imgur.com/aVs3KiM.png)

## Information Coefficient Tear Sheet

![image](https://i.imgur.com/vAm8okb.png)

## Sector Tear Sheet

![image](https://i.imgur.com/pnBs0ta.png)

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "alphalens-tej",
    "maintainer": "tej",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "tej@tej.com.tw",
    "keywords": "",
    "author": "tej",
    "author_email": "tej@tej.com.tw",
    "download_url": "https://files.pythonhosted.org/packages/16/44/648c1522893ec3d6cb25ad11cf9d9a26ec2b04ef18a209efacb8ab28cf70/alphalens-tej-2.0.2.tar.gz",
    "platform": null,
    "description": "<p align=\"center\">\n<a href=\"https://alphalens.ml4trading.io\">\n<img src=\"https://i.imgur.com/uf8PmQO.png\" width=\"35%\">\n</a>\n</p>\n\n![PyPI](https://img.shields.io/pypi/v/alphalens-reloaded)\n[![Anaconda](https://github.com/stefan-jansen/alphalens-reloaded/actions/workflows/conda_package.yml/badge.svg)](https://github.com/stefan-jansen/alphalens-reloaded/actions/workflows/conda_package.yml)\n[![Tests](https://github.com/stefan-jansen/alphalens-reloaded/actions/workflows/unit_tests.yml/badge.svg)](https://github.com/stefan-jansen/alphalens-reloaded/actions/workflows/unit_tests.yml)\n[![PyPI](https://github.com/stefan-jansen/alphalens-reloaded/actions/workflows/build_wheels.yml/badge.svg)](https://github.com/stefan-jansen/alphalens-reloaded/actions/workflows/build_wheels.yml)\n[![Coverage Status](https://coveralls.io/repos/github/stefan-jansen/alphalens-reloaded/badge.svg?branch=main)](https://coveralls.io/github/stefan-jansen/alphalens-reloaded?branch=main)\n![GitHub issues](https://img.shields.io/github/issues/stefan-jansen/alphalens-reloaded)\n![PyPI - License](https://img.shields.io/pypi/l/alphalens-reloaded)\n![Discourse users](https://img.shields.io/discourse/users?server=https%3A%2F%2Fexchange.ml4trading.io%2F)\n![Twitter Follow](https://img.shields.io/twitter/follow/ml4trading?style=social)\n\nAlphalens is a Python library for performance analysis of predictive\n(alpha) stock factors. Alphalens works great with the\n[Zipline](https://www.zipline.ml4trading.io/) open source backtesting library, and [Pyfolio](https://github.com/quantopian/pyfolio) which provides performance and risk analysis of financial portfolios.\n\nThe main function of Alphalens is to surface the most relevant statistics and plots about an alpha factor, including:\n\n- Returns Analysis\n- Information Coefficient Analysis\n- Turnover Analysis\n- Grouped Analysis\n\n# Getting started\n\nWith a signal and pricing data creating a factor \\\"tear sheet\\\" is a two step process:\n\n```python\nimport alphalens\n\n# Ingest and format data\nfactor_data = alphalens.utils.get_clean_factor_and_forward_returns(my_factor,\n                                                                   pricing,\n                                                                   quantiles=5,\n                                                                   groupby=ticker_sector,\n                                                                   groupby_labels=sector_names)\n\n# Run analysis\nalphalens.tears.create_full_tear_sheet(factor_data)\n```\n\n# Learn more\n\nCheck out the [example notebooks](https://github.com/stefan-jansen/alphalens-reloaded/tree/master/alphalens/examples)\nfor more on how to read and use the factor tear sheet.\n\n# Installation\n\nInstall with pip:\n\n    pip install alphalens-reloaded\n\nInstall with conda:\n\n    conda install -c ml4t alphalens-reloaded\n\nInstall from the master branch of Alphalens repository (development code):\n\n    pip install git+https://github.com/stefan-jansen/alphalens-reloaded\n\nAlphalens depends on:\n\n- [matplotlib](https://github.com/matplotlib/matplotlib)\n- [numpy](https://github.com/numpy/numpy)\n- [pandas](https://github.com/pandas-dev/pandas)\n- [scipy](https://github.com/scipy/scipy)\n- [seaborn](https://github.com/mwaskom/seaborn)\n- [statsmodels](https://github.com/statsmodels/statsmodels)\n\n# Usage\n\nA good way to get started is to run the examples in a [Jupyter notebook](https://jupyter.org/).\n\nTo get set up with an example, you can:\n\nRun a Jupyter notebook server via:\n\n```bash\njupyter notebook\n```\n\nFrom the notebook list page(usually found at `http://localhost:8888/`), navigate over to the examples directory, and open any file with a .ipynb extension.\n\nExecute the code in a notebook cell by clicking on it and hitting Shift+Enter.\n\n# Questions?\n\nIf you find a bug, feel free to open an issue on our [github tracker](https://github.com/stefan-jansen/alphalens-reloaded/issues).\n\n# Contribute\n\nIf you want to contribute, a great place to start would be the\n[help-wanted issues](https://github.com/stefan-jansen/alphalens-reloaded/issues?q=is%3Aopen+is%3Aissue+label%3A%22help+wanted%22).\n\n# Credits\n\n- [Andrew Campbell](https://github.com/a-campbell)\n- [James Christopher](https://github.com/jameschristopher)\n- [Thomas Wiecki](https://github.com/twiecki)\n- [Jonathan Larkin](https://github.com/marketneutral)\n- Jessica Stauth (<jstauth@quantopian.com>)\n- [Taso Petridis](https://github.com/tasopetridis)\n\nFor a full list of contributors see the [contributors page.](https://github.com/stefan-jansen/alphalens-reloaded/graphs/contributors)\n\n# Example Tear Sheets\n\nExample factor courtesy of [ExtractAlpha](https://extractalpha.com/)\n\n## Peformance Metrics Tables\n\n![image](https://i.imgur.com/4T8cziG.png)\n\n## Returns Tear Sheet\n\n![image](https://i.imgur.com/aVs3KiM.png)\n\n## Information Coefficient Tear Sheet\n\n![image](https://i.imgur.com/vAm8okb.png)\n\n## Sector Tear Sheet\n\n![image](https://i.imgur.com/pnBs0ta.png)\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "Performance analysis of predictive (alpha) stock factors",
    "version": "2.0.2",
    "project_urls": {
        "homepage": "https://tquant.tejwin.com/",
        "repository": "https://github.com/tejtw/alphalens-tej"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ece57eada2225f1d17fc062a994d3297cc0edead2886786141d3aa103f006d3c",
                "md5": "9d960b62ce1c8c011762789dfe0bce4b",
                "sha256": "ce4c2b75687a8b95c5c2bbf619d24e8d5f193f9b511bd23e728f47af49072ddb"
            },
            "downloads": -1,
            "filename": "alphalens_tej-2.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "9d960b62ce1c8c011762789dfe0bce4b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 42184,
            "upload_time": "2024-03-13T07:19:22",
            "upload_time_iso_8601": "2024-03-13T07:19:22.936912Z",
            "url": "https://files.pythonhosted.org/packages/ec/e5/7eada2225f1d17fc062a994d3297cc0edead2886786141d3aa103f006d3c/alphalens_tej-2.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1644648c1522893ec3d6cb25ad11cf9d9a26ec2b04ef18a209efacb8ab28cf70",
                "md5": "c67b14d19a9d21d7161268e4eaa82356",
                "sha256": "7cce4d393d51e070267a2565182f321d33455a4b80408d5dfc1d726d461af053"
            },
            "downloads": -1,
            "filename": "alphalens-tej-2.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "c67b14d19a9d21d7161268e4eaa82356",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 7170977,
            "upload_time": "2024-03-13T07:19:24",
            "upload_time_iso_8601": "2024-03-13T07:19:24.270822Z",
            "url": "https://files.pythonhosted.org/packages/16/44/648c1522893ec3d6cb25ad11cf9d9a26ec2b04ef18a209efacb8ab28cf70/alphalens-tej-2.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-03-13 07:19:24",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "tejtw",
    "github_project": "alphalens-tej",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "alphalens-tej"
}
        
tej
Elapsed time: 0.20117s