altair-alx-version


Namealtair-alx-version JSON
Version 5.4.0.dev0 PyPI version JSON
download
home_pageNone
SummaryVega-Altair: A declarative statistical visualization library for Python.
upload_time2024-04-10 20:46:36
maintainerNone
docs_urlNone
authorVega-Altair Contributors
requires_python>=3.8
licenseNone
keywords declarative interactive json statistics vega-lite visualization
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Vega-Altair <a href="https://altair-viz.github.io/"><img align="right" src="https://altair-viz.github.io/_static/altair-logo-light.png" height="50"></img></a>

[![github actions](https://github.com/altair-viz/altair/workflows/build/badge.svg)](https://github.com/altair-viz/altair/actions?query=workflow%3Abuild)
[![typedlib_mypy](https://www.mypy-lang.org/static/mypy_badge.svg)](https://www.mypy-lang.org)
[![JOSS Paper](https://joss.theoj.org/papers/10.21105/joss.01057/status.svg)](https://joss.theoj.org/papers/10.21105/joss.01057)
[![PyPI - Downloads](https://img.shields.io/pypi/dm/altair)](https://pypi.org/project/altair)

**Vega-Altair** is a declarative statistical visualization library for Python. With Vega-Altair, you can spend more time understanding your data and its meaning. Vega-Altair's
API is simple, friendly and consistent and built on top of the powerful
[Vega-Lite](https://github.com/vega/vega-lite) JSON specification. This elegant
simplicity produces beautiful and effective visualizations with a minimal amount of code. 

*Vega-Altair was originally developed by [Jake Vanderplas](https://github.com/jakevdp) and [Brian
Granger](https://github.com/ellisonbg) in close collaboration with the [UW
Interactive Data Lab](https://idl.cs.washington.edu/).*
*The Vega-Altair open source project is not affiliated with Altair Engineering, Inc.*

## Documentation

See [Vega-Altair's Documentation Site](https://altair-viz.github.io) as well as the [Tutorial Notebooks](https://github.com/altair-viz/altair_notebooks). You can
run the notebooks directly in your browser by clicking on one of the following badges:

[![Binder](https://beta.mybinder.org/badge.svg)](https://beta.mybinder.org/v2/gh/altair-viz/altair_notebooks/master)
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/altair-viz/altair_notebooks/blob/master/notebooks/Index.ipynb)

## Example

Here is an example using Vega-Altair to quickly visualize and display a dataset with the native Vega-Lite renderer in the JupyterLab:

```python
import altair as alt

# load a simple dataset as a pandas DataFrame
from vega_datasets import data
cars = data.cars()

alt.Chart(cars).mark_point().encode(
    x='Horsepower',
    y='Miles_per_Gallon',
    color='Origin',
)
```

![Vega-Altair Visualization](https://raw.githubusercontent.com/altair-viz/altair/main/images/cars.png)

One of the unique features of Vega-Altair, inherited from Vega-Lite, is a declarative grammar of not just visualization, but _interaction_. 
With a few modifications to the example above we can create a linked histogram that is filtered based on a selection of the scatter plot.

```python 
import altair as alt
from vega_datasets import data

source = data.cars()

brush = alt.selection_interval()

points = alt.Chart(source).mark_point().encode(
    x='Horsepower',
    y='Miles_per_Gallon',
    color=alt.condition(brush, 'Origin', alt.value('lightgray'))
).add_params(
    brush
)

bars = alt.Chart(source).mark_bar().encode(
    y='Origin',
    color='Origin',
    x='count(Origin)'
).transform_filter(
    brush
)

points & bars
```

![Vega-Altair Visualization Gif](https://raw.githubusercontent.com/altair-viz/altair/main/images/cars_scatter_bar.gif)

## Features

* Carefully-designed, declarative Python API.
* Auto-generated internal Python API that guarantees visualizations are type-checked and
  in full conformance with the [Vega-Lite](https://github.com/vega/vega-lite)
  specification.
* Display visualizations in JupyterLab, Jupyter Notebook, Visual Studio Code, on GitHub and
  [nbviewer](https://nbviewer.jupyter.org/), and many more.
* Export visualizations to various formats such as PNG/SVG images, stand-alone HTML pages and the
[Online Vega-Lite Editor](https://vega.github.io/editor/#/).
* Serialize visualizations as JSON files.

## Installation

Vega-Altair can be installed with:
```bash
pip install altair
```

If you are using the conda package manager, the equivalent is:
```bash
conda install altair -c conda-forge
```

For full installation instructions, please see [the documentation](https://altair-viz.github.io/getting_started/installation.html).

## Getting Help

If you have a question that is not addressed in the documentation, 
you can post it on [StackOverflow](https://stackoverflow.com/questions/tagged/altair) using the `altair` tag.
For bugs and feature requests, please open a [Github Issue](https://github.com/altair-viz/altair/issues).

## Development

[![Hatch project](https://img.shields.io/badge/%F0%9F%A5%9A-Hatch-4051b5.svg)](https://github.com/pypa/hatch)
[![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)
[![pytest](https://img.shields.io/badge/logo-pytest-blue?logo=pytest&labelColor=5c5c5c&label=%20)](https://github.com/pytest-dev/pytest)

You can find the instructions on how to install the package for development in [the documentation](https://altair-viz.github.io/getting_started/installation.html).

To run the tests and linters, use

```
hatch run test
```

For information on how to contribute your developments back to the Vega-Altair repository, see
[`CONTRIBUTING.md`](https://github.com/altair-viz/altair/blob/main/CONTRIBUTING.md)

## Citing Vega-Altair

[![JOSS Paper](https://joss.theoj.org/papers/10.21105/joss.01057/status.svg)](https://joss.theoj.org/papers/10.21105/joss.01057)

If you use Vega-Altair in academic work, please consider citing https://joss.theoj.org/papers/10.21105/joss.01057 as

```bib
@article{VanderPlas2018,
    doi = {10.21105/joss.01057},
    url = {https://doi.org/10.21105/joss.01057},
    year = {2018},
    publisher = {The Open Journal},
    volume = {3},
    number = {32},
    pages = {1057},
    author = {Jacob VanderPlas and Brian Granger and Jeffrey Heer and Dominik Moritz and Kanit Wongsuphasawat and Arvind Satyanarayan and Eitan Lees and Ilia Timofeev and Ben Welsh and Scott Sievert},
    title = {Altair: Interactive Statistical Visualizations for Python},
    journal = {Journal of Open Source Software}
}
```
Please additionally consider citing the [Vega-Lite](https://vega.github.io/vega-lite/) project, which Vega-Altair is based on: https://dl.acm.org/doi/10.1109/TVCG.2016.2599030

```bib
@article{Satyanarayan2017,
    author={Satyanarayan, Arvind and Moritz, Dominik and Wongsuphasawat, Kanit and Heer, Jeffrey},
    title={Vega-Lite: A Grammar of Interactive Graphics},
    journal={IEEE transactions on visualization and computer graphics},
    year={2017},
    volume={23},
    number={1},
    pages={341-350},
    publisher={IEEE}
} 
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "altair-alx-version",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "declarative, interactive, json, statistics, vega-lite, visualization",
    "author": "Vega-Altair Contributors",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/92/d7/02994e4f7b6928c1e5c38918b9eab20729e6063291878528f20de61bad8e/altair_alx_version-5.4.0.dev0.tar.gz",
    "platform": null,
    "description": "# Vega-Altair <a href=\"https://altair-viz.github.io/\"><img align=\"right\" src=\"https://altair-viz.github.io/_static/altair-logo-light.png\" height=\"50\"></img></a>\n\n[![github actions](https://github.com/altair-viz/altair/workflows/build/badge.svg)](https://github.com/altair-viz/altair/actions?query=workflow%3Abuild)\n[![typedlib_mypy](https://www.mypy-lang.org/static/mypy_badge.svg)](https://www.mypy-lang.org)\n[![JOSS Paper](https://joss.theoj.org/papers/10.21105/joss.01057/status.svg)](https://joss.theoj.org/papers/10.21105/joss.01057)\n[![PyPI - Downloads](https://img.shields.io/pypi/dm/altair)](https://pypi.org/project/altair)\n\n**Vega-Altair** is a declarative statistical visualization library for Python. With Vega-Altair, you can spend more time understanding your data and its meaning. Vega-Altair's\nAPI is simple, friendly and consistent and built on top of the powerful\n[Vega-Lite](https://github.com/vega/vega-lite) JSON specification. This elegant\nsimplicity produces beautiful and effective visualizations with a minimal amount of code. \n\n*Vega-Altair was originally developed by [Jake Vanderplas](https://github.com/jakevdp) and [Brian\nGranger](https://github.com/ellisonbg) in close collaboration with the [UW\nInteractive Data Lab](https://idl.cs.washington.edu/).*\n*The Vega-Altair open source project is not affiliated with Altair Engineering, Inc.*\n\n## Documentation\n\nSee [Vega-Altair's Documentation Site](https://altair-viz.github.io) as well as the [Tutorial Notebooks](https://github.com/altair-viz/altair_notebooks). You can\nrun the notebooks directly in your browser by clicking on one of the following badges:\n\n[![Binder](https://beta.mybinder.org/badge.svg)](https://beta.mybinder.org/v2/gh/altair-viz/altair_notebooks/master)\n[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/altair-viz/altair_notebooks/blob/master/notebooks/Index.ipynb)\n\n## Example\n\nHere is an example using Vega-Altair to quickly visualize and display a dataset with the native Vega-Lite renderer in the JupyterLab:\n\n```python\nimport altair as alt\n\n# load a simple dataset as a pandas DataFrame\nfrom vega_datasets import data\ncars = data.cars()\n\nalt.Chart(cars).mark_point().encode(\n    x='Horsepower',\n    y='Miles_per_Gallon',\n    color='Origin',\n)\n```\n\n![Vega-Altair Visualization](https://raw.githubusercontent.com/altair-viz/altair/main/images/cars.png)\n\nOne of the unique features of Vega-Altair, inherited from Vega-Lite, is a declarative grammar of not just visualization, but _interaction_. \nWith a few modifications to the example above we can create a linked histogram that is filtered based on a selection of the scatter plot.\n\n```python \nimport altair as alt\nfrom vega_datasets import data\n\nsource = data.cars()\n\nbrush = alt.selection_interval()\n\npoints = alt.Chart(source).mark_point().encode(\n    x='Horsepower',\n    y='Miles_per_Gallon',\n    color=alt.condition(brush, 'Origin', alt.value('lightgray'))\n).add_params(\n    brush\n)\n\nbars = alt.Chart(source).mark_bar().encode(\n    y='Origin',\n    color='Origin',\n    x='count(Origin)'\n).transform_filter(\n    brush\n)\n\npoints & bars\n```\n\n![Vega-Altair Visualization Gif](https://raw.githubusercontent.com/altair-viz/altair/main/images/cars_scatter_bar.gif)\n\n## Features\n\n* Carefully-designed, declarative Python API.\n* Auto-generated internal Python API that guarantees visualizations are type-checked and\n  in full conformance with the [Vega-Lite](https://github.com/vega/vega-lite)\n  specification.\n* Display visualizations in JupyterLab, Jupyter Notebook, Visual Studio Code, on GitHub and\n  [nbviewer](https://nbviewer.jupyter.org/), and many more.\n* Export visualizations to various formats such as PNG/SVG images, stand-alone HTML pages and the\n[Online Vega-Lite Editor](https://vega.github.io/editor/#/).\n* Serialize visualizations as JSON files.\n\n## Installation\n\nVega-Altair can be installed with:\n```bash\npip install altair\n```\n\nIf you are using the conda package manager, the equivalent is:\n```bash\nconda install altair -c conda-forge\n```\n\nFor full installation instructions, please see [the documentation](https://altair-viz.github.io/getting_started/installation.html).\n\n## Getting Help\n\nIf you have a question that is not addressed in the documentation, \nyou can post it on [StackOverflow](https://stackoverflow.com/questions/tagged/altair) using the `altair` tag.\nFor bugs and feature requests, please open a [Github Issue](https://github.com/altair-viz/altair/issues).\n\n## Development\n\n[![Hatch project](https://img.shields.io/badge/%F0%9F%A5%9A-Hatch-4051b5.svg)](https://github.com/pypa/hatch)\n[![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)\n[![pytest](https://img.shields.io/badge/logo-pytest-blue?logo=pytest&labelColor=5c5c5c&label=%20)](https://github.com/pytest-dev/pytest)\n\nYou can find the instructions on how to install the package for development in [the documentation](https://altair-viz.github.io/getting_started/installation.html).\n\nTo run the tests and linters, use\n\n```\nhatch run test\n```\n\nFor information on how to contribute your developments back to the Vega-Altair repository, see\n[`CONTRIBUTING.md`](https://github.com/altair-viz/altair/blob/main/CONTRIBUTING.md)\n\n## Citing Vega-Altair\n\n[![JOSS Paper](https://joss.theoj.org/papers/10.21105/joss.01057/status.svg)](https://joss.theoj.org/papers/10.21105/joss.01057)\n\nIf you use Vega-Altair in academic work, please consider citing https://joss.theoj.org/papers/10.21105/joss.01057 as\n\n```bib\n@article{VanderPlas2018,\n    doi = {10.21105/joss.01057},\n    url = {https://doi.org/10.21105/joss.01057},\n    year = {2018},\n    publisher = {The Open Journal},\n    volume = {3},\n    number = {32},\n    pages = {1057},\n    author = {Jacob VanderPlas and Brian Granger and Jeffrey Heer and Dominik Moritz and Kanit Wongsuphasawat and Arvind Satyanarayan and Eitan Lees and Ilia Timofeev and Ben Welsh and Scott Sievert},\n    title = {Altair: Interactive Statistical Visualizations for Python},\n    journal = {Journal of Open Source Software}\n}\n```\nPlease additionally consider citing the [Vega-Lite](https://vega.github.io/vega-lite/) project, which Vega-Altair is based on: https://dl.acm.org/doi/10.1109/TVCG.2016.2599030\n\n```bib\n@article{Satyanarayan2017,\n    author={Satyanarayan, Arvind and Moritz, Dominik and Wongsuphasawat, Kanit and Heer, Jeffrey},\n    title={Vega-Lite: A Grammar of Interactive Graphics},\n    journal={IEEE transactions on visualization and computer graphics},\n    year={2017},\n    volume={23},\n    number={1},\n    pages={341-350},\n    publisher={IEEE}\n} \n```\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Vega-Altair: A declarative statistical visualization library for Python.",
    "version": "5.4.0.dev0",
    "project_urls": {
        "Documentation": "https://altair-viz.github.io",
        "Source": "https://github.com/altair-viz/altair"
    },
    "split_keywords": [
        "declarative",
        " interactive",
        " json",
        " statistics",
        " vega-lite",
        " visualization"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "ec8d0a729a2e85179242d901259440eee08eed093812591fe8b0d6454d49c0f8",
                "md5": "a3167db0f046357924b37bef53e2edef",
                "sha256": "b2838b160c0cfdfa74e6a782f7f5cd53e16e91d4ae9132f0f05b6bc7fcf7b163"
            },
            "downloads": -1,
            "filename": "altair_alx_version-5.4.0.dev0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "a3167db0f046357924b37bef53e2edef",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 862102,
            "upload_time": "2024-04-10T20:46:33",
            "upload_time_iso_8601": "2024-04-10T20:46:33.851061Z",
            "url": "https://files.pythonhosted.org/packages/ec/8d/0a729a2e85179242d901259440eee08eed093812591fe8b0d6454d49c0f8/altair_alx_version-5.4.0.dev0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "92d702994e4f7b6928c1e5c38918b9eab20729e6063291878528f20de61bad8e",
                "md5": "d42f3a9c1588cd6ec75e607b9337d11d",
                "sha256": "a501a156bdce9792a57a1d3c2a9b9be024e7a560c927bac29726fe99ee4512aa"
            },
            "downloads": -1,
            "filename": "altair_alx_version-5.4.0.dev0.tar.gz",
            "has_sig": false,
            "md5_digest": "d42f3a9c1588cd6ec75e607b9337d11d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 830572,
            "upload_time": "2024-04-10T20:46:36",
            "upload_time_iso_8601": "2024-04-10T20:46:36.377023Z",
            "url": "https://files.pythonhosted.org/packages/92/d7/02994e4f7b6928c1e5c38918b9eab20729e6063291878528f20de61bad8e/altair_alx_version-5.4.0.dev0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-10 20:46:36",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "altair-viz",
    "github_project": "altair",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "altair-alx-version"
}
        
Elapsed time: 0.22264s