ampdLib


NameampdLib JSON
Version 1.1.5 PyPI version JSON
download
home_page
SummaryImplementation of AMPD algorithm for peak detection in quasi-periodic signals
upload_time2023-12-08 15:17:07
maintainer
docs_urlNone
author
requires_python>=3.6
license
keywords peak detection signal processing quasi-periodic signals
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            README.md rev. 10 Feb 2023 by Luca Cerina.
Copyright (c) 2023 Luca Cerina.
Distributed under the Apache 2.0 License in the accompanying file LICENSE.

# Automatic Multiscale-based Peak Detection (AMPD)

ampdLib implements automatic multiscale-based peak detection (AMPD) algorithm
as in An Efficient Algorithm for Automatic Peak Detection in Noisy Periodic and
Quasi-Periodic Signals, by Felix Scholkmann, Jens Boss and Martin Wolf,
Algorithms 2012, 5, 588-603.

### Python required dependencies
- Python >= 3.6
- Numpy
- Scipy for tests

### Installation
The library can be easily installed with setuptools support using `pip install .` or via PyPI with `pip install ampdlib`

### Usage
A simple example is:
```
peaks = ampdlib.ampd(input)
```

AMPD may require a lot of memory (N*(lsm_limit*N/2) bytes for a given length N and default lsm_limit). A solution is to divide the signal in windows with `ampd_fast` or `ampd_fast_sub` or determine a better lsm_limit for the minimum distance between peaks required by the use case with `get_optimal_size`. 

### Tests
The tests folder contains an ECG signal with annotated peaks in matlab format.

#### Contribution
If you feel generous and want to show some extra appreciation:

[![Buy me a coffee][buymeacoffee-shield]][buymeacoffee]

[buymeacoffee]: https://www.buymeacoffee.com/u2Vb3kO
[buymeacoffee-shield]: https://www.buymeacoffee.com/assets/img/custom_images/orange_img.png

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "ampdLib",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "peak detection,signal processing,quasi-periodic signals",
    "author": "",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/b2/f4/f0d7e9f5014576f53493343fa16fa8ee6e6b91c4328313fcd90819178077/ampdLib-1.1.5.tar.gz",
    "platform": null,
    "description": "README.md rev. 10 Feb 2023 by Luca Cerina.\r\nCopyright (c) 2023 Luca Cerina.\r\nDistributed under the Apache 2.0 License in the accompanying file LICENSE.\r\n\r\n# Automatic Multiscale-based Peak Detection (AMPD)\r\n\r\nampdLib implements automatic multiscale-based peak detection (AMPD) algorithm\r\nas in An Efficient Algorithm for Automatic Peak Detection in Noisy Periodic and\r\nQuasi-Periodic Signals, by Felix Scholkmann, Jens Boss and Martin Wolf,\r\nAlgorithms 2012, 5, 588-603.\r\n\r\n### Python required dependencies\r\n- Python >= 3.6\r\n- Numpy\r\n- Scipy for tests\r\n\r\n### Installation\r\nThe library can be easily installed with setuptools support using `pip install .` or via PyPI with `pip install ampdlib`\r\n\r\n### Usage\r\nA simple example is:\r\n```\r\npeaks = ampdlib.ampd(input)\r\n```\r\n\r\nAMPD may require a lot of memory (N*(lsm_limit*N/2) bytes for a given length N and default lsm_limit). A solution is to divide the signal in windows with `ampd_fast` or `ampd_fast_sub` or determine a better lsm_limit for the minimum distance between peaks required by the use case with `get_optimal_size`. \r\n\r\n### Tests\r\nThe tests folder contains an ECG signal with annotated peaks in matlab format.\r\n\r\n#### Contribution\r\nIf you feel generous and want to show some extra appreciation:\r\n\r\n[![Buy me a coffee][buymeacoffee-shield]][buymeacoffee]\r\n\r\n[buymeacoffee]: https://www.buymeacoffee.com/u2Vb3kO\r\n[buymeacoffee-shield]: https://www.buymeacoffee.com/assets/img/custom_images/orange_img.png\r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Implementation of AMPD algorithm for peak detection in quasi-periodic signals",
    "version": "1.1.5",
    "project_urls": {
        "homepage": "https://github.com/LucaCerina/ampdLib"
    },
    "split_keywords": [
        "peak detection",
        "signal processing",
        "quasi-periodic signals"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4ea1891b323a4beef82e2e86fed95ed529e19b0409732ec57c76cd234115bb07",
                "md5": "5ee91b2071bddd34b0f651bd27b6c629",
                "sha256": "d4127d4953ea0aa3ca750ee7dd6ad557b6f0109b7fec71d82d5bc5e1f2cdea1e"
            },
            "downloads": -1,
            "filename": "ampdLib-1.1.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "5ee91b2071bddd34b0f651bd27b6c629",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 10773,
            "upload_time": "2023-12-08T15:17:06",
            "upload_time_iso_8601": "2023-12-08T15:17:06.458494Z",
            "url": "https://files.pythonhosted.org/packages/4e/a1/891b323a4beef82e2e86fed95ed529e19b0409732ec57c76cd234115bb07/ampdLib-1.1.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b2f4f0d7e9f5014576f53493343fa16fa8ee6e6b91c4328313fcd90819178077",
                "md5": "36401d6ebe6771ae9ceccda397573270",
                "sha256": "b5543b4d5b65f9860ca6dc44101db7e0f0a8cccade94c4e7d07a42d63dec3081"
            },
            "downloads": -1,
            "filename": "ampdLib-1.1.5.tar.gz",
            "has_sig": false,
            "md5_digest": "36401d6ebe6771ae9ceccda397573270",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 10146,
            "upload_time": "2023-12-08T15:17:07",
            "upload_time_iso_8601": "2023-12-08T15:17:07.606746Z",
            "url": "https://files.pythonhosted.org/packages/b2/f4/f0d7e9f5014576f53493343fa16fa8ee6e6b91c4328313fcd90819178077/ampdLib-1.1.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-12-08 15:17:07",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "LucaCerina",
    "github_project": "ampdLib",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "ampdlib"
}
        
Elapsed time: 2.95514s