Name | ampdLib JSON |
Version |
1.1.5
JSON |
| download |
home_page | |
Summary | Implementation of AMPD algorithm for peak detection in quasi-periodic signals |
upload_time | 2023-12-08 15:17:07 |
maintainer | |
docs_url | None |
author | |
requires_python | >=3.6 |
license | |
keywords |
peak detection
signal processing
quasi-periodic signals
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
README.md rev. 10 Feb 2023 by Luca Cerina.
Copyright (c) 2023 Luca Cerina.
Distributed under the Apache 2.0 License in the accompanying file LICENSE.
# Automatic Multiscale-based Peak Detection (AMPD)
ampdLib implements automatic multiscale-based peak detection (AMPD) algorithm
as in An Efficient Algorithm for Automatic Peak Detection in Noisy Periodic and
Quasi-Periodic Signals, by Felix Scholkmann, Jens Boss and Martin Wolf,
Algorithms 2012, 5, 588-603.
### Python required dependencies
- Python >= 3.6
- Numpy
- Scipy for tests
### Installation
The library can be easily installed with setuptools support using `pip install .` or via PyPI with `pip install ampdlib`
### Usage
A simple example is:
```
peaks = ampdlib.ampd(input)
```
AMPD may require a lot of memory (N*(lsm_limit*N/2) bytes for a given length N and default lsm_limit). A solution is to divide the signal in windows with `ampd_fast` or `ampd_fast_sub` or determine a better lsm_limit for the minimum distance between peaks required by the use case with `get_optimal_size`.
### Tests
The tests folder contains an ECG signal with annotated peaks in matlab format.
#### Contribution
If you feel generous and want to show some extra appreciation:
[![Buy me a coffee][buymeacoffee-shield]][buymeacoffee]
[buymeacoffee]: https://www.buymeacoffee.com/u2Vb3kO
[buymeacoffee-shield]: https://www.buymeacoffee.com/assets/img/custom_images/orange_img.png
Raw data
{
"_id": null,
"home_page": "",
"name": "ampdLib",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": "",
"keywords": "peak detection,signal processing,quasi-periodic signals",
"author": "",
"author_email": "",
"download_url": "https://files.pythonhosted.org/packages/b2/f4/f0d7e9f5014576f53493343fa16fa8ee6e6b91c4328313fcd90819178077/ampdLib-1.1.5.tar.gz",
"platform": null,
"description": "README.md rev. 10 Feb 2023 by Luca Cerina.\r\nCopyright (c) 2023 Luca Cerina.\r\nDistributed under the Apache 2.0 License in the accompanying file LICENSE.\r\n\r\n# Automatic Multiscale-based Peak Detection (AMPD)\r\n\r\nampdLib implements automatic multiscale-based peak detection (AMPD) algorithm\r\nas in An Efficient Algorithm for Automatic Peak Detection in Noisy Periodic and\r\nQuasi-Periodic Signals, by Felix Scholkmann, Jens Boss and Martin Wolf,\r\nAlgorithms 2012, 5, 588-603.\r\n\r\n### Python required dependencies\r\n- Python >= 3.6\r\n- Numpy\r\n- Scipy for tests\r\n\r\n### Installation\r\nThe library can be easily installed with setuptools support using `pip install .` or via PyPI with `pip install ampdlib`\r\n\r\n### Usage\r\nA simple example is:\r\n```\r\npeaks = ampdlib.ampd(input)\r\n```\r\n\r\nAMPD may require a lot of memory (N*(lsm_limit*N/2) bytes for a given length N and default lsm_limit). A solution is to divide the signal in windows with `ampd_fast` or `ampd_fast_sub` or determine a better lsm_limit for the minimum distance between peaks required by the use case with `get_optimal_size`. \r\n\r\n### Tests\r\nThe tests folder contains an ECG signal with annotated peaks in matlab format.\r\n\r\n#### Contribution\r\nIf you feel generous and want to show some extra appreciation:\r\n\r\n[![Buy me a coffee][buymeacoffee-shield]][buymeacoffee]\r\n\r\n[buymeacoffee]: https://www.buymeacoffee.com/u2Vb3kO\r\n[buymeacoffee-shield]: https://www.buymeacoffee.com/assets/img/custom_images/orange_img.png\r\n",
"bugtrack_url": null,
"license": "",
"summary": "Implementation of AMPD algorithm for peak detection in quasi-periodic signals",
"version": "1.1.5",
"project_urls": {
"homepage": "https://github.com/LucaCerina/ampdLib"
},
"split_keywords": [
"peak detection",
"signal processing",
"quasi-periodic signals"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "4ea1891b323a4beef82e2e86fed95ed529e19b0409732ec57c76cd234115bb07",
"md5": "5ee91b2071bddd34b0f651bd27b6c629",
"sha256": "d4127d4953ea0aa3ca750ee7dd6ad557b6f0109b7fec71d82d5bc5e1f2cdea1e"
},
"downloads": -1,
"filename": "ampdLib-1.1.5-py3-none-any.whl",
"has_sig": false,
"md5_digest": "5ee91b2071bddd34b0f651bd27b6c629",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 10773,
"upload_time": "2023-12-08T15:17:06",
"upload_time_iso_8601": "2023-12-08T15:17:06.458494Z",
"url": "https://files.pythonhosted.org/packages/4e/a1/891b323a4beef82e2e86fed95ed529e19b0409732ec57c76cd234115bb07/ampdLib-1.1.5-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b2f4f0d7e9f5014576f53493343fa16fa8ee6e6b91c4328313fcd90819178077",
"md5": "36401d6ebe6771ae9ceccda397573270",
"sha256": "b5543b4d5b65f9860ca6dc44101db7e0f0a8cccade94c4e7d07a42d63dec3081"
},
"downloads": -1,
"filename": "ampdLib-1.1.5.tar.gz",
"has_sig": false,
"md5_digest": "36401d6ebe6771ae9ceccda397573270",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 10146,
"upload_time": "2023-12-08T15:17:07",
"upload_time_iso_8601": "2023-12-08T15:17:07.606746Z",
"url": "https://files.pythonhosted.org/packages/b2/f4/f0d7e9f5014576f53493343fa16fa8ee6e6b91c4328313fcd90819178077/ampdLib-1.1.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-12-08 15:17:07",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "LucaCerina",
"github_project": "ampdLib",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "ampdlib"
}