amplifyy


Nameamplifyy JSON
Version 0.1 PyPI version JSON
download
home_pageNone
SummaryImage Augmentation Tool
upload_time2024-07-08 12:20:36
maintainerNone
docs_urlNone
authorAdarsh Kesharwani
requires_pythonNone
licenseNone
keywords python image augement augmentation
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Image Augmentation Package

## Overview

This package provides a set of functions for image augmentation using various techniques. Users can integrate these functions into their projects to preprocess images for machine learning tasks or other applications.

## Features

- **Image Augmentation Functions**: Includes functions for flipping, rotating, shearing, cropping, blurring, adjusting exposure, adding noise, and more.
- **Flexible Integration**: Functions can be used individually or combined based on user requirements.
- **Output Options**: Generates augmented images in a specified output directory, with options to create ZIP or TAR.GZ archives.

## Installation

To install the package, you can use pip:

```bash
pip install amplifyy==0.0.1
```

## Usage

### Example Usage

```python
from amplifyy import (
    get_custom_augmented_images,
    get_augmentation_descriptions,
    apply_all_augmentations,
    create_zip,
    create_tar_gz_with_timestamp
)

input_dir = 'path/to/input/directory'
output_dir = 'path/to/output/directory'

# Display available augmentations with their descriptions
augmentation_descriptions = get_augmentation_descriptions()
for method, description in augmentation_descriptions.items():
    print(f'{method}: {description}')

# User selects augmentation methods based on the provided descriptions
user_choices = [1, 2, 3, 4, 5]  # Example choices

# Apply specific augmentations
get_custom_augmented_images(input_dir, output_dir, user_choices)

# Apply all augmentations
apply_all_augmentations(input_dir, output_dir)

# Create a zip file of augmented images
create_zip('augmented_images.zip', output_dir)

# Create a tar.gz file of augmented images with a timestamp
create_tar_gz_with_timestamp(output_dir)
```

### Functions

- **`get_augmentation_descriptions()`**: Returns all augmentation options that can be select by user.

- **`get_custom_augmented_images(input_dir, output_dir, user_choices)`**: Applies selected augmentations to images in `input_dir` and saves augmented images to `output_dir`.
  
- **`apply_all_augmentations(input_dir, output_dir)`**: Applies all available augmentations to images in `input_dir` and saves them to `output_dir`.
  
- **`create_zip(zip_filename, output_dir)`**: Creates a ZIP archive containing augmented images from `output_dir`.
  
- **`create_tar_gz_with_timestamp(output_dir)`**: Creates a TAR.GZ archive with a timestamp containing augmented images from `output_dir`.

Additionally, we have a special command that you can run after installing the package:

```bash
amplifyy
```

What it does is a secret, so try it out and see for yourself!

## License

This project is licensed under the License - see the [LICENSE](https://github.com/Adarshh9/Amplify/blob/main/LICENSE) file for details.

## Acknowledgments

- The script uses the Pillow and OpenCV libraries for image processing.
- Image augmentation functions are adapted from common techniques used in data augmentation for computer vision.

## Contributing

Contributions are welcome! Please fork the repository and submit a pull request with your enhancements.

## Support

For any questions or issues, please [open an issue](https://github.com/Adarshh9/Amplify/issues) on GitHub.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "amplifyy",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "python, image augement, augmentation",
    "author": "Adarsh Kesharwani",
    "author_email": "<akesherwani900@gamil.com>",
    "download_url": "https://files.pythonhosted.org/packages/2e/19/00652249c72b6358f4d4899003d9a586157ab7a776b41151b260ba296548/amplifyy-0.1.tar.gz",
    "platform": null,
    "description": "# Image Augmentation Package\n\n## Overview\n\nThis package provides a set of functions for image augmentation using various techniques. Users can integrate these functions into their projects to preprocess images for machine learning tasks or other applications.\n\n## Features\n\n- **Image Augmentation Functions**: Includes functions for flipping, rotating, shearing, cropping, blurring, adjusting exposure, adding noise, and more.\n- **Flexible Integration**: Functions can be used individually or combined based on user requirements.\n- **Output Options**: Generates augmented images in a specified output directory, with options to create ZIP or TAR.GZ archives.\n\n## Installation\n\nTo install the package, you can use pip:\n\n```bash\npip install amplifyy==0.0.1\n```\n\n## Usage\n\n### Example Usage\n\n```python\nfrom amplifyy import (\n    get_custom_augmented_images,\n    get_augmentation_descriptions,\n    apply_all_augmentations,\n    create_zip,\n    create_tar_gz_with_timestamp\n)\n\ninput_dir = 'path/to/input/directory'\noutput_dir = 'path/to/output/directory'\n\n# Display available augmentations with their descriptions\naugmentation_descriptions = get_augmentation_descriptions()\nfor method, description in augmentation_descriptions.items():\n    print(f'{method}: {description}')\n\n# User selects augmentation methods based on the provided descriptions\nuser_choices = [1, 2, 3, 4, 5]  # Example choices\n\n# Apply specific augmentations\nget_custom_augmented_images(input_dir, output_dir, user_choices)\n\n# Apply all augmentations\napply_all_augmentations(input_dir, output_dir)\n\n# Create a zip file of augmented images\ncreate_zip('augmented_images.zip', output_dir)\n\n# Create a tar.gz file of augmented images with a timestamp\ncreate_tar_gz_with_timestamp(output_dir)\n```\n\n### Functions\n\n- **`get_augmentation_descriptions()`**: Returns all augmentation options that can be select by user.\n\n- **`get_custom_augmented_images(input_dir, output_dir, user_choices)`**: Applies selected augmentations to images in `input_dir` and saves augmented images to `output_dir`.\n  \n- **`apply_all_augmentations(input_dir, output_dir)`**: Applies all available augmentations to images in `input_dir` and saves them to `output_dir`.\n  \n- **`create_zip(zip_filename, output_dir)`**: Creates a ZIP archive containing augmented images from `output_dir`.\n  \n- **`create_tar_gz_with_timestamp(output_dir)`**: Creates a TAR.GZ archive with a timestamp containing augmented images from `output_dir`.\n\nAdditionally, we have a special command that you can run after installing the package:\n\n```bash\namplifyy\n```\n\nWhat it does is a secret, so try it out and see for yourself!\n\n## License\n\nThis project is licensed under the License - see the [LICENSE](https://github.com/Adarshh9/Amplify/blob/main/LICENSE) file for details.\n\n## Acknowledgments\n\n- The script uses the Pillow and OpenCV libraries for image processing.\n- Image augmentation functions are adapted from common techniques used in data augmentation for computer vision.\n\n## Contributing\n\nContributions are welcome! Please fork the repository and submit a pull request with your enhancements.\n\n## Support\n\nFor any questions or issues, please [open an issue](https://github.com/Adarshh9/Amplify/issues) on GitHub.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Image Augmentation Tool",
    "version": "0.1",
    "project_urls": null,
    "split_keywords": [
        "python",
        " image augement",
        " augmentation"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "eb2cd683b0bdf719f68721fd11787a39984b12aa1f928f4501a17649fd9122a2",
                "md5": "d5d49c5d4c27250df49e0f1ec48aa3cb",
                "sha256": "319054294d2d50d67a30e211c3cdd1d1c8272c4ddf043f0648749b854c2d9c5e"
            },
            "downloads": -1,
            "filename": "amplifyy-0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d5d49c5d4c27250df49e0f1ec48aa3cb",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 5758,
            "upload_time": "2024-07-08T12:20:34",
            "upload_time_iso_8601": "2024-07-08T12:20:34.671128Z",
            "url": "https://files.pythonhosted.org/packages/eb/2c/d683b0bdf719f68721fd11787a39984b12aa1f928f4501a17649fd9122a2/amplifyy-0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2e1900652249c72b6358f4d4899003d9a586157ab7a776b41151b260ba296548",
                "md5": "3925e4c1818f85ed61b7127cb7ef6c96",
                "sha256": "08fcc22fa9d5d62b86c3fcf32daf9f5e05c11a61c7c0178116c1f9d3f06c1aaf"
            },
            "downloads": -1,
            "filename": "amplifyy-0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "3925e4c1818f85ed61b7127cb7ef6c96",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 5122,
            "upload_time": "2024-07-08T12:20:36",
            "upload_time_iso_8601": "2024-07-08T12:20:36.499667Z",
            "url": "https://files.pythonhosted.org/packages/2e/19/00652249c72b6358f4d4899003d9a586157ab7a776b41151b260ba296548/amplifyy-0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-07-08 12:20:36",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "amplifyy"
}
        
Elapsed time: 3.81807s