[pypi-version-image]: https://badge.fury.io/py/ampy.svg?=
[pypi-version-url]: https://badge.fury.io/py/ampy
[docs-image]: https://readthedocs.org/projects/ampy/badge/?version=latest
[docs-url]: https://ampy.readthedocs.io/en/latest
[linting-image]: https://github.com/swarmtronics/AMPy/actions/workflows/pylint.yml/badge.svg
[linting-url]: https://github.com/swarmtronics/AMPy/actions/workflows/pylint.yml
[coverage-image]: https://coveralls.io/repos/github/swarmtronics/AMPy/badge.svg?service=github&kill_cache=1
[coverage-url]: https://coveralls.io/github/swarmtronics/AMPy
[pypi-license-image]: https://img.shields.io/pypi/l/ampy


[](https://www.python.org)
[![PyPI version][pypi-version-image]][pypi-version-url]
[![Docs Status][docs-image]][docs-url]
[![Coverage Status][coverage-image]][coverage-url]
[![Linting Status][linting-image]][linting-url]
![PyPI - License][pypi-license-image]
**[Website](https://swarmtronics.com)** | **[Documentation](https://ampy.readthedocs.io/en/latest/)** | **[Paper](https://arxiv.org/abs/2305.13510)** | **[Video Tutorial](https://www.youtube.com/watch?v=dQw4w9WgXcQ)** (TBD) | **[Colab Notebook](https://colab.research.google.com/drive/1hiCGXoDtOEO3LOm6RG12111Kiwofh069?usp=sharing)**
**AMPy** is a *baseline* library built upon [OpenCV](https://opencv.org/) and [NumPy](https://numpy.org/) to easily process experimental video data for active matter and disordered systems. Our library turns the processing of experiment recordings into a cakewalk, considerably accelerating extraction of system dynamics.
## Overview
The library is comprised of 4 components: `processing.py`, `statistic2d.py`, `statistic3d.py`, `animation.py`, and `utils.py`.
- `processing.py` handles the initial processing of experimental video recordings and tracks the ArUco markers placed on the robots' upper surfaces.
- `statistics2d.py` extracts various two-dimensional statistical measures from obtained kinematics (such as Cartesian displacement or order parameters).
- `statistics3d.py` evaluates position, orientation, and velocity correlation maps for the entire platform.
- `animation.py` generates .gif/.mp4 with different visual augmentations of an input video.
- `utils.py` provides methods for reading/saving video data.
If you want a brief introduction into library capabilities, we prepared [a Colab tutorial](https://colab.research.google.com/drive/1hiCGXoDtOEO3LOm6RG12111Kiwofh069?usp=sharing) for that occasion.
## Installation
AMPy is available at [the Python Package Index](https://pypi.org/project/ampy/):
```
$ pip install ampy
```
## Preparing markers
For users' convenience, we provide [the .ipynb notebook](https://github.com/swarmtronics/AMPy/tree/master/marker_generator) allowing to generate ArUco- and AprilTag-based markers for tracking of their own robots.
## Contact us
If you have some questions about the code, you are welcome to open an issue, we will respond to that as soon as possible. Contributions towards extension of AMPy functionality are more than welcome!
## License
Established code released as open-source software under the GPLv3 license.
## Citation
```
@misc{
dmitriev2023swarmobot,
title={Swarmodroid 1.0: A Modular Bristle-Bot Platform for Robotic Active Matter},
author={Alexey A. Dmitriev and Alina D. Rozenblit and Vadim A. Porvatov and
Mikhail K. Buzakov and Anastasia A. Molodtsova and Daria V. Sennikova and
Vyacheslav A. Smirnov and Oleg I. Burmistrov and Ekaterina M. Puhtina and
Nikita A. Olekhno},
year={2023},
eprint={2305.13510},
archivePrefix={arXiv},
primaryClass={cond-mat.soft}
}
```
Raw data
{
"_id": null,
"home_page": null,
"name": "ampy",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "active-matter, disordered-systems, swarm-robotics, order-parameter, correlation-map",
"author": null,
"author_email": "Vadim Porvatov <eighonet@gmail.com>, Mikhail Buzakov <m.k.buzakov@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/ba/66/8fc011914120111654c3dc7cc2744b2cdbe8fb39aab5c90ae36c98a17a7f/ampy-0.1.3.4.tar.gz",
"platform": null,
"description": "[pypi-version-image]: https://badge.fury.io/py/ampy.svg?=\n[pypi-version-url]: https://badge.fury.io/py/ampy\n\n[docs-image]: https://readthedocs.org/projects/ampy/badge/?version=latest\n[docs-url]: https://ampy.readthedocs.io/en/latest\n\n[linting-image]: https://github.com/swarmtronics/AMPy/actions/workflows/pylint.yml/badge.svg\n[linting-url]: https://github.com/swarmtronics/AMPy/actions/workflows/pylint.yml\n\n[coverage-image]: https://coveralls.io/repos/github/swarmtronics/AMPy/badge.svg?service=github&kill_cache=1\n[coverage-url]: https://coveralls.io/github/swarmtronics/AMPy\n\n[pypi-license-image]: https://img.shields.io/pypi/l/ampy\n\n\n\n\n\n[](https://www.python.org)\n[![PyPI version][pypi-version-image]][pypi-version-url]\n[![Docs Status][docs-image]][docs-url]\n[![Coverage Status][coverage-image]][coverage-url]\n[![Linting Status][linting-image]][linting-url]\n![PyPI - License][pypi-license-image]\n\n**[Website](https://swarmtronics.com)** | **[Documentation](https://ampy.readthedocs.io/en/latest/)** | **[Paper](https://arxiv.org/abs/2305.13510)** | **[Video Tutorial](https://www.youtube.com/watch?v=dQw4w9WgXcQ)** (TBD) | **[Colab Notebook](https://colab.research.google.com/drive/1hiCGXoDtOEO3LOm6RG12111Kiwofh069?usp=sharing)**\n\n**AMPy** is a *baseline* library built upon [OpenCV](https://opencv.org/) and [NumPy](https://numpy.org/) to easily process experimental video data for active matter and disordered systems. Our library turns the processing of experiment recordings into a cakewalk, considerably accelerating extraction of system dynamics.\n\n## Overview\n\nThe library is comprised of 4 components: `processing.py`, `statistic2d.py`, `statistic3d.py`, `animation.py`, and `utils.py`. \n\n- `processing.py` handles the initial processing of experimental video recordings and tracks the ArUco markers placed on the robots' upper surfaces. \n\n- `statistics2d.py` extracts various two-dimensional statistical measures from obtained kinematics (such as Cartesian displacement or order parameters). \n\n- `statistics3d.py` evaluates position, orientation, and velocity correlation maps for the entire platform.\n \n- `animation.py` generates .gif/.mp4 with different visual augmentations of an input video.\n\n- `utils.py` provides methods for reading/saving video data. \n\nIf you want a brief introduction into library capabilities, we prepared [a Colab tutorial](https://colab.research.google.com/drive/1hiCGXoDtOEO3LOm6RG12111Kiwofh069?usp=sharing) for that occasion.\n\n## Installation\n\nAMPy is available at [the Python Package Index](https://pypi.org/project/ampy/):\n\n```\n$ pip install ampy\n```\n\n## Preparing markers\n\nFor users' convenience, we provide [the .ipynb notebook](https://github.com/swarmtronics/AMPy/tree/master/marker_generator) allowing to generate ArUco- and AprilTag-based markers for tracking of their own robots.\n\n## Contact us\n\nIf you have some questions about the code, you are welcome to open an issue, we will respond to that as soon as possible. Contributions towards extension of AMPy functionality are more than welcome!\n\n## License\n\nEstablished code released as open-source software under the GPLv3 license.\n\n## Citation\n\n```\n@misc{\n dmitriev2023swarmobot,\n title={Swarmodroid 1.0: A Modular Bristle-Bot Platform for Robotic Active Matter}, \n author={Alexey A. Dmitriev and Alina D. Rozenblit and Vadim A. Porvatov and\n Mikhail K. Buzakov and Anastasia A. Molodtsova and Daria V. Sennikova and\n Vyacheslav A. Smirnov and Oleg I. Burmistrov and Ekaterina M. Puhtina and\n Nikita A. Olekhno},\n year={2023},\n eprint={2305.13510},\n archivePrefix={arXiv},\n primaryClass={cond-mat.soft}\n}\n```\n\n",
"bugtrack_url": null,
"license": null,
"summary": "Python-based Processing Tool for Active Matter Experiments",
"version": "0.1.3.4",
"project_urls": {
"documentation": "https://ampy.readthedocs.io",
"homepage": "https://swarmtronics.com",
"repository": "https://github.com/swarmtronics/AMPy.git"
},
"split_keywords": [
"active-matter",
" disordered-systems",
" swarm-robotics",
" order-parameter",
" correlation-map"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "454b9d25b92b7ca0ac458d1b9457f16079e3f003d9add35ed0041d32ad9ea673",
"md5": "750b069238653c401490bf53001472c1",
"sha256": "3dc95275f5424c9b1f46048d624a12a1ff8937bc613a14ebdf35c928a6f6ac28"
},
"downloads": -1,
"filename": "ampy-0.1.3.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "750b069238653c401490bf53001472c1",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 13650,
"upload_time": "2024-07-18T05:39:12",
"upload_time_iso_8601": "2024-07-18T05:39:12.540111Z",
"url": "https://files.pythonhosted.org/packages/45/4b/9d25b92b7ca0ac458d1b9457f16079e3f003d9add35ed0041d32ad9ea673/ampy-0.1.3.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ba668fc011914120111654c3dc7cc2744b2cdbe8fb39aab5c90ae36c98a17a7f",
"md5": "492047593ae1ed8bd47b53827aab4e0a",
"sha256": "7a49cabfe7ef566b7170e8231e2b7010b8c3d2cefdf6fa2473ac17094c1b1a1b"
},
"downloads": -1,
"filename": "ampy-0.1.3.4.tar.gz",
"has_sig": false,
"md5_digest": "492047593ae1ed8bd47b53827aab4e0a",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 13097,
"upload_time": "2024-07-18T05:39:13",
"upload_time_iso_8601": "2024-07-18T05:39:13.814404Z",
"url": "https://files.pythonhosted.org/packages/ba/66/8fc011914120111654c3dc7cc2744b2cdbe8fb39aab5c90ae36c98a17a7f/ampy-0.1.3.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-07-18 05:39:13",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "swarmtronics",
"github_project": "AMPy",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "ampy"
}