Name | angle-emb JSON |
Version |
0.5.6
JSON |
| download |
home_page | None |
Summary | AnglE-optimize Text Embeddings |
upload_time | 2025-01-15 06:14:16 |
maintainer | None |
docs_url | None |
author | sean lee |
requires_python | None |
license | None |
keywords |
angle_emb
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
<small>EN | [įŽäŊ䏿](README_zh.md) </small>
# AnglE đ
> <small>Sponsored by <a href="https://www.mixedbread.ai/">Mixedbread</a></small>
**For more detailed usage, please read the đ document:** https://angle.readthedocs.io/en/latest/index.html
<a href="https://arxiv.org/abs/2309.12871">
<img src="https://img.shields.io/badge/Arxiv-2309.12871-yellow.svg?style=flat-square" alt="https://arxiv.org/abs/2309.12871" />
</a>
<a href="https://pypi.org/project/angle_emb/">
<img src="https://img.shields.io/pypi/v/angle_emb?style=flat-square" alt="PyPI version" />
</a>
<a href="https://pypi.org/project/angle_emb/">
<img src="https://img.shields.io/pypi/dm/angle_emb?style=flat-square" alt="PyPI Downloads" />
</a>
<a href="https://angle.readthedocs.io/en/latest/index.html">
<img src="https://readthedocs.org/projects/angle/badge/?version=latest&style=flat-square" alt="Read the docs" />
</a>
[](https://paperswithcode.com/sota/semantic-textual-similarity-on-sick-r-1?p=angle-optimized-text-embeddings)
[](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts16?p=angle-optimized-text-embeddings)
[](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts15?p=angle-optimized-text-embeddings)
[](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts14?p=angle-optimized-text-embeddings)
[](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts13?p=angle-optimized-text-embeddings)
[](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts12?p=angle-optimized-text-embeddings)
[](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts-benchmark?p=angle-optimized-text-embeddings)
đĸ **Train/Infer Powerful Sentence Embeddings with AnglE.**
This library is from the paper: [AnglE: Angle-optimized Text Embeddings](https://arxiv.org/abs/2309.12871). It allows for training state-of-the-art BERT/LLM-based sentence embeddings with just a few lines of code. AnglE is also a general sentence embedding inference framework, allowing for infering a variety of transformer-based sentence embeddings.
## ⨠Features
**Loss**:
- đ AnglE loss
- â Contrastive loss
- đ CoSENT loss
- âī¸ Espresso loss (previously known as 2DMSE, detail: [README_ESE](README_ESE.md))
**Backbones**:
- BERT-based models (BERT, RoBERTa, ELECTRA, ALBERT, etc.)
- LLM-based models (LLaMA, Mistral, Qwen, etc.)
- Bi-directional LLM-based models (LLaMA, Mistral, Qwen, OpenELMo, etc.. refer to: https://github.com/WhereIsAI/BiLLM)
**Training**:
- Single-GPU training
- Multi-GPU training
> <a href="http://makeapullrequest.com"><img src="https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square" alt="http://makeapullrequest.com" /></a>
More features will be added in the future.
## đ Achievements
đ
May 16, 2024 | Paper "[AnglE: Angle-optimized Text Embeddings](https://arxiv.org/abs/2309.12871)" is accepted by ACL 2024 Main Conference.
đ
Mar 13, 2024 | Paper "[BeLLM: Backward Dependency Enhanced Large Language Model for Sentence Embeddings](https://arxiv.org/abs/2311.05296)" is accepted by NAACL 2024 Main Conference.
đ
Mar 8, 2024 | đ [mixedbread's embedding](https://www.mixedbread.ai/blog/mxbai-embed-large-v1) ([mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1)) achieves SOTA on the [MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard) with an average score of **64.68**! The model is trained using AnglE. Congrats mixedbread!
đ
Dec 4, 2023 | Our universal sentence embedding [WhereIsAI/UAE-Large-V1](https://huggingface.co/WhereIsAI/UAE-Large-V1) achieves SOTA on the [MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard) with an average score of **64.64**! The model is trained using AnglE.
đ
Dec, 2023 | AnglE achieves SOTA performance on the STS Bechmark Semantic Textual Similarity!
## đ¤ Official Pretrained Models
BERT-based models:
| đ¤ HF | Max Tokens | Pooling Strategy | Scenario |
|----|------|------|------|
| [WhereIsAI/UAE-Large-V1](https://huggingface.co/WhereIsAI/UAE-Large-V1) | 512 | cls | English, General-purpose |
| [WhereIsAI/UAE-Code-Large-V1](https://huggingface.co/WhereIsAI/UAE-Code-Large-V1) | 512 | cls | Code Similarity |
| [WhereIsAI/pubmed-angle-base-en](https://huggingface.co/WhereIsAI/pubmed-angle-base-en) | 512 | cls | Medical Similarity |
| [WhereIsAI/pubmed-angle-large-en](https://huggingface.co/WhereIsAI/pubmed-angle-large-en) | 512 | cls | Medical Similarity |
LLM-based models:
| đ¤ HF (lora weight) | Backbone | Max Tokens | Prompts | Pooling Strategy | Scenario |
|----|------|------|------|------|------|
| [SeanLee97/angle-llama-13b-nli](https://huggingface.co/SeanLee97/angle-llama-13b-nli) | NousResearch/Llama-2-13b-hf | 4096 | `Prompts.A` | last token | English, Similarity Measurement |
| [SeanLee97/angle-llama-7b-nli-v2](https://huggingface.co/SeanLee97/angle-llama-7b-nli-v2) | NousResearch/Llama-2-7b-hf | 4096 | `Prompts.A` | last token | English, Similarity Measurement |
**đĄ You can find more third-party embeddings trained with AnglE in [HuggingFace Collection](https://huggingface.co/collections/SeanLee97/angle-based-embeddings-669a181354729d168a6ead9b)**
## đ Quick Start
### âŦī¸ Installation
```bash
python -m pip install -U angle-emb
```
### â Infer BERT-based Model
[](https://colab.research.google.com/drive/1QJcA2Mvive4pBxWweTpZz9OgwvE42eJZ?usp=sharing)
1) **With Prompts**: You can specify a prompt with `prompt=YOUR_PROMPT` in `encode` method. If set a prompt, the inputs should be a list of dict or a single dict with key `text`, where `text` is the placeholder in the prompt for the input text. You can use other placeholder names. We provide a set of predefined prompts in `Prompts` class, you can check them via `Prompts.list_prompts()`.
```python
from angle_emb import AnglE, Prompts
from angle_emb.utils import cosine_similarity
angle = AnglE.from_pretrained('WhereIsAI/UAE-Large-V1', pooling_strategy='cls').cuda()
# For retrieval tasks, we use `Prompts.C` as the prompt for the query when using UAE-Large-V1 (no need to specify prompt for documents).
# When specify prompt, the inputs should be a list of dict with key 'text'
qv = angle.encode({'text': 'what is the weather?'}, to_numpy=True, prompt=Prompts.C)
doc_vecs = angle.encode([
'The weather is great!',
'it is rainy today.',
'i am going to bed'
], to_numpy=True)
for dv in doc_vecs:
print(cosine_similarity(qv[0], dv))
```
2) **Without Prompts**: no need to specify a prompt. Just input a list of strings or a single string.
```python
from angle_emb import AnglE
from angle_emb.utils import cosine_similarity
angle = AnglE.from_pretrained('WhereIsAI/UAE-Large-V1', pooling_strategy='cls').cuda()
# for non-retrieval tasks, we don't need to specify prompt when using UAE-Large-V1.
doc_vecs = angle.encode([
'The weather is great!',
'The weather is very good!',
'i am going to bed'
])
for i, dv1 in enumerate(doc_vecs):
for dv2 in doc_vecs[i+1:]:
print(cosine_similarity(dv1, dv2))
```
### â Infer LLM-based Models
[](https://colab.research.google.com/drive/1QJcA2Mvive4pBxWweTpZz9OgwvE42eJZ?usp=sharing)
If the pretrained weight is a LoRA-based model, you need to specify the backbone via `model_name_or_path` and specify the LoRA path via the `pretrained_lora_path` in `from_pretrained` method.
```python
import torch
from angle_emb import AnglE, Prompts
from angle_emb.utils import cosine_similarity
angle = AnglE.from_pretrained('NousResearch/Llama-2-7b-hf',
pretrained_lora_path='SeanLee97/angle-llama-7b-nli-v2',
pooling_strategy='last',
is_llm=True,
torch_dtype=torch.float16).cuda()
print('All predefined prompts:', Prompts.list_prompts())
doc_vecs = angle.encode([
{'text': 'The weather is great!'},
{'text': 'The weather is very good!'},
{'text': 'i am going to bed'}
], prompt=Prompts.A)
for i, dv1 in enumerate(doc_vecs):
for dv2 in doc_vecs[i+1:]:
print(cosine_similarity(dv1, dv2))
```
### â Infer BiLLM-based Models
[](https://colab.research.google.com/drive/1QJcA2Mvive4pBxWweTpZz9OgwvE42eJZ?usp=sharing)
Specify `apply_billm` and `billm_model_class` to load and infer billm models
```python
import os
# set an environment variable for billm start index
os.environ['BiLLM_START_INDEX'] = '31'
import torch
from angle_emb import AnglE, Prompts
from angle_emb.utils import cosine_similarity
# specify `apply_billm` and `billm_model_class` to load billm models
angle = AnglE.from_pretrained('NousResearch/Llama-2-7b-hf',
pretrained_lora_path='SeanLee97/bellm-llama-7b-nli',
pooling_strategy='last',
is_llm=True,
apply_billm=True,
billm_model_class='LlamaForCausalLM',
torch_dtype=torch.float16).cuda()
doc_vecs = angle.encode([
{'text': 'The weather is great!'},
{'text': 'The weather is very good!'},
{'text': 'i am going to bed'}
], prompt='The representative word for sentence {text} is:"')
for i, dv1 in enumerate(doc_vecs):
for dv2 in doc_vecs[i+1:]:
print(cosine_similarity(dv1, dv2))
```
### â Infer Espresso/Matryoshka Models
[](https://colab.research.google.com/drive/1QJcA2Mvive4pBxWweTpZz9OgwvE42eJZ?usp=sharing)
Specify `layer_index` and `embedding_size` to truncate embeddings.
```python
from angle_emb import AnglE
from angle_emb.utils import cosine_similarity
angle = AnglE.from_pretrained('mixedbread-ai/mxbai-embed-2d-large-v1', pooling_strategy='cls').cuda()
# truncate layer
angle = angle.truncate_layer(layer_index=22)
# specify embedding size to truncate embeddings
doc_vecs = angle.encode([
'The weather is great!',
'The weather is very good!',
'i am going to bed'
], embedding_size=768)
for i, dv1 in enumerate(doc_vecs):
for dv2 in doc_vecs[i+1:]:
print(cosine_similarity(dv1, dv2))
```
### â Infer Third-party Models
You can load any transformer-based third-party models such as `mixedbread-ai/mxbai-embed-large-v1`, `sentence-transformers/all-MiniLM-L6-v2`, and `BAAI/bge-large-en-v1.5` using `angle_emb`.
Here is an example:
```python
from angle_emb import AnglE
model = AnglE.from_pretrained('mixedbread-ai/mxbai-embed-large-v1', pooling_strategy='cls').cuda()
vec = model.encode('hello world', to_numpy=True)
print(vec)
```
## Batch Inference
It is recommended to use Mixedbread's `batched` library to speed up the inference process.
```bash
python -m pip install batched
```
```python
import batched
from angle_emb import AnglE
model = AnglE.from_pretrained("WhereIsAI/UAE-Large-V1", pooling_strategy='cls').cuda()
model.encode = batched.dynamically(model.encode, batch_size=64)
vecs = model.encode([
'The weather is great!',
'The weather is very good!',
'i am going to bed'
] * 50)
```
## đ¸ī¸ Custom Train
đĄ For more details, please refer to the [training and fintuning](https://angle.readthedocs.io/en/latest/notes/training.html).
### đī¸ 1. Data Prepation
We currently support three dataset formats:
1) `DatasetFormats.A`: it is a pair format with three columns: `text1`, `text2`, and `label` (0/1).
2) `DatasetFormats.B`: it is a triple format with three columns: `text`, `positive`, and `negative`. `positive` and `negative` store the positive and negative samples of `text`.
3) `DatasetFormats.C`: it is a pair format with two columns: `text`, `positive`. `positive` store the positive sample of `text`.
You need to prepare your data into huggingface `datasets.Dataset` in one of the formats in terms of your supervised data.
### đ 2. Train with CLI [Recommended]
Use `angle-trainer` to train your AnglE model in cli mode.
1) Single gpu training:
Usage:
```bash
CUDA_VISIBLE_DEVICES=0 angle-trainer --help
```
2) Multi-gpu training:
Usage:
```bash
CUDA_VISIBLE_DEVICES=0,1 torchrun --nproc_per_node=2 --master_port=1234 -m angle_emb.angle_trainer --help
```
### đ 3. Custom Train
[](https://colab.research.google.com/drive/1h28jHvv_x-0fZ0tItIMjf8rJGp3GcO5V?usp=sharing)
```python
from datasets import load_dataset
from angle_emb import AnglE, AngleDataTokenizer
# 1. load pretrained model
angle = AnglE.from_pretrained('SeanLee97/angle-bert-base-uncased-nli-en-v1', max_length=128, pooling_strategy='cls').cuda()
# 2. load dataset
# `text1`, `text2`, and `label` are three required columns.
ds = load_dataset('mteb/stsbenchmark-sts')
ds = ds.map(lambda obj: {"text1": str(obj["sentence1"]), "text2": str(obj['sentence2']), "label": obj['score']})
ds = ds.select_columns(["text1", "text2", "label"])
# 3. transform data
train_ds = ds['train'].shuffle().map(AngleDataTokenizer(angle.tokenizer, angle.max_length), num_proc=8)
valid_ds = ds['validation'].map(AngleDataTokenizer(angle.tokenizer, angle.max_length), num_proc=8)
# 4. fit
angle.fit(
train_ds=train_ds,
valid_ds=valid_ds,
output_dir='ckpts/sts-b',
batch_size=32,
epochs=5,
learning_rate=2e-5,
save_steps=100,
eval_steps=1000,
warmup_steps=0,
gradient_accumulation_steps=1,
loss_kwargs={
'cosine_w': 1.0,
'ibn_w': 1.0,
'cln_w': 1.0,
'angle_w': 0.02,
'cosine_tau': 20,
'ibn_tau': 20,
'angle_tau': 20
},
fp16=True,
logging_steps=100
)
# 5. evaluate
corrcoef = angle.evaluate(ds['test'])
print('Spearman\'s corrcoef:', corrcoef)
```
### đĄ Others
- To enable `llm` training, please specify `--is_llm 1` and configure appropriate LoRA hyperparameters.
- To enable `billm` training, please specify `--apply_billm 1` and configure appropriate `billm_model_class` such as `LLamaForCausalLM` (refer to: https://github.com/WhereIsAI/BiLLM?tab=readme-ov-file#usage).
- To enable espresso sentence embeddings (ESE), please specify `--apply_ese 1` and configure appropriate ESE hyperparameters via `--ese_kl_temperature float` and `--ese_compression_size integer`.
- To convert the trained AnglE models to `sentence-transformers`, please run `python scripts/convert_to_sentence_transformers.py --help` for more details.
## đĄ 4. Fine-tuning Tips
For more details, please refer to the [documentation](https://angle.readthedocs.io/en/latest/notes/training.html#fine-tuning-tips).
1ī¸âŖ If your dataset format is `DatasetFormats.A`, it is recommended to slightly increase the weight for `cosine_w` or slightly decrease the weight for `ibn_w`.
2ī¸âŖ If your dataset format is `DatasetFormats.B`, it is recommended to set `cosine_w` to 0, and set `angle_w` to a small value like 0.02. Be sure to set `cln_w` and `ibn_w`.
3ī¸âŖ If your dataset format is `DatasetFormats.C`, only `ibn_w` and `ibn_tau` are effective. You don't need to tune other parameters.
4ī¸âŖ To alleviate information forgetting in fine-tuning, it is better to specify the `teacher_name_or_path`. If the `teacher_name_or_path` equals `model_name_or_path`, it will conduct self-distillation. **It is worth to note that** `teacher_name_or_path` has to have the same tokenizer as `model_name_or_path`. Or it will lead to unexpected results.
## 5. Finetuning and Infering AnglE with `sentence-transformers`
- **Training:** SentenceTransformers also provides a implementation of [AnglE loss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#angleloss). **But it is partially implemented and may not work well as the official code. We recommend to use the official `angle_emb` for fine-tuning AnglE model.**
- **Infering:** If your model is trained with `angle_emb`, and you want to use it with `sentence-transformers`. You can convert it to `sentence-transformers` model using the script `examples/convert_to_sentence_transformers.py`.
# đĢĄ Citation
You are welcome to use our code and pre-trained models. If you use our code and pre-trained models, please support us by citing our work as follows:
```bibtex
@article{li2023angle,
title={AnglE-optimized Text Embeddings},
author={Li, Xianming and Li, Jing},
journal={arXiv preprint arXiv:2309.12871},
year={2023}
}
```
# đ ChangeLogs
| đ
| Description |
|----|------|
| 2024 May 21 | support Espresso Sentence Embeddings |
| 2024 Feb 7 | support training with only positive pairs (`DatasetFormats.C`) |
| 2023 Dec 4 | Release a universal English sentence embedding model: [WhereIsAI/UAE-Large-V1](https://huggingface.co/WhereIsAI/UAE-Large-V1) |
| 2023 Nov 2 | Release an English pretrained model: `SeanLee97/angle-llama-13b-nli` |
| 2023 Oct 28 | Release two chinese pretrained models: `SeanLee97/angle-roberta-wwm-base-zhnli-v1` and `SeanLee97/angle-llama-7b-zhnli-v1`; Add chinese README.md |
# đ§ Contact
If you have any questions or suggestions, please feel free to contact us via email: xmlee97@gmail.com
# Š License
This project is licensed under the MIT License.
For the pretrained models, please refer to the corresponding license of the models.
Raw data
{
"_id": null,
"home_page": null,
"name": "angle-emb",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "angle_emb",
"author": "sean lee",
"author_email": "xmlee97@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/a9/8c/cf951980ca0109576a62f35975656c1d6bc3d19b5f85578b30b438f63242/angle_emb-0.5.6.tar.gz",
"platform": null,
"description": "<small>EN | [\u7b80\u4f53\u4e2d\u6587](README_zh.md) </small>\n\n# AnglE \ud83d\udcd0\n> <small>Sponsored by <a href=\"https://www.mixedbread.ai/\">Mixedbread</a></small>\n\n**For more detailed usage, please read the \ud83d\udcd8 document:** https://angle.readthedocs.io/en/latest/index.html\n\n<a href=\"https://arxiv.org/abs/2309.12871\">\n <img src=\"https://img.shields.io/badge/Arxiv-2309.12871-yellow.svg?style=flat-square\" alt=\"https://arxiv.org/abs/2309.12871\" />\n</a>\n<a href=\"https://pypi.org/project/angle_emb/\">\n <img src=\"https://img.shields.io/pypi/v/angle_emb?style=flat-square\" alt=\"PyPI version\" />\n</a>\n<a href=\"https://pypi.org/project/angle_emb/\">\n <img src=\"https://img.shields.io/pypi/dm/angle_emb?style=flat-square\" alt=\"PyPI Downloads\" />\n</a>\n<a href=\"https://angle.readthedocs.io/en/latest/index.html\">\n <img src=\"https://readthedocs.org/projects/angle/badge/?version=latest&style=flat-square\" alt=\"Read the docs\" />\n</a>\n\n\n[](https://paperswithcode.com/sota/semantic-textual-similarity-on-sick-r-1?p=angle-optimized-text-embeddings)\n[](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts16?p=angle-optimized-text-embeddings)\n[](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts15?p=angle-optimized-text-embeddings)\n[](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts14?p=angle-optimized-text-embeddings)\n[](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts13?p=angle-optimized-text-embeddings)\n[](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts12?p=angle-optimized-text-embeddings)\n[](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts-benchmark?p=angle-optimized-text-embeddings)\n\n\ud83d\udce2 **Train/Infer Powerful Sentence Embeddings with AnglE.**\nThis library is from the paper: [AnglE: Angle-optimized Text Embeddings](https://arxiv.org/abs/2309.12871). It allows for training state-of-the-art BERT/LLM-based sentence embeddings with just a few lines of code. AnglE is also a general sentence embedding inference framework, allowing for infering a variety of transformer-based sentence embeddings.\n\n## \u2728 Features\n\n**Loss**:\n- \ud83d\udcd0 AnglE loss\n- \u2696 Contrastive loss\n- \ud83d\udccf CoSENT loss\n- \u2615\ufe0f Espresso loss (previously known as 2DMSE, detail: [README_ESE](README_ESE.md))\n\n**Backbones**:\n- BERT-based models (BERT, RoBERTa, ELECTRA, ALBERT, etc.)\n- LLM-based models (LLaMA, Mistral, Qwen, etc.)\n- Bi-directional LLM-based models (LLaMA, Mistral, Qwen, OpenELMo, etc.. refer to: https://github.com/WhereIsAI/BiLLM)\n\n**Training**:\n- Single-GPU training\n- Multi-GPU training\n\n\n> <a href=\"http://makeapullrequest.com\"><img src=\"https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square\" alt=\"http://makeapullrequest.com\" /></a> \n More features will be added in the future. \n\n## \ud83c\udfc6 Achievements\n\n\ud83d\udcc5 May 16, 2024 | Paper \"[AnglE: Angle-optimized Text Embeddings](https://arxiv.org/abs/2309.12871)\" is accepted by ACL 2024 Main Conference.\n\n\ud83d\udcc5 Mar 13, 2024 | Paper \"[BeLLM: Backward Dependency Enhanced Large Language Model for Sentence Embeddings](https://arxiv.org/abs/2311.05296)\" is accepted by NAACL 2024 Main Conference.\n\n\n\ud83d\udcc5 Mar 8, 2024 | \ud83c\udf5e [mixedbread's embedding](https://www.mixedbread.ai/blog/mxbai-embed-large-v1) ([mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1)) achieves SOTA on the [MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard) with an average score of **64.68**! The model is trained using AnglE. Congrats mixedbread!\n\n\n\ud83d\udcc5 Dec 4, 2023 | Our universal sentence embedding [WhereIsAI/UAE-Large-V1](https://huggingface.co/WhereIsAI/UAE-Large-V1) achieves SOTA on the [MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard) with an average score of **64.64**! The model is trained using AnglE.\n\n\n\ud83d\udcc5 Dec, 2023 | AnglE achieves SOTA performance on the STS Bechmark Semantic Textual Similarity! \n\n\n## \ud83e\udd17 Official Pretrained Models\n\nBERT-based models:\n\n| \ud83e\udd17 HF | Max Tokens | Pooling Strategy | Scenario |\n|----|------|------|------|\n| [WhereIsAI/UAE-Large-V1](https://huggingface.co/WhereIsAI/UAE-Large-V1) | 512 | cls | English, General-purpose |\n| [WhereIsAI/UAE-Code-Large-V1](https://huggingface.co/WhereIsAI/UAE-Code-Large-V1) | 512 | cls | Code Similarity |\n| [WhereIsAI/pubmed-angle-base-en](https://huggingface.co/WhereIsAI/pubmed-angle-base-en) | 512 | cls | Medical Similarity |\n| [WhereIsAI/pubmed-angle-large-en](https://huggingface.co/WhereIsAI/pubmed-angle-large-en) | 512 | cls | Medical Similarity |\n\nLLM-based models:\n\n| \ud83e\udd17 HF (lora weight) | Backbone | Max Tokens | Prompts | Pooling Strategy | Scenario |\n|----|------|------|------|------|------|\n| [SeanLee97/angle-llama-13b-nli](https://huggingface.co/SeanLee97/angle-llama-13b-nli) | NousResearch/Llama-2-13b-hf | 4096 | `Prompts.A` | last token | English, Similarity Measurement | \n| [SeanLee97/angle-llama-7b-nli-v2](https://huggingface.co/SeanLee97/angle-llama-7b-nli-v2) | NousResearch/Llama-2-7b-hf | 4096 | `Prompts.A` | last token | English, Similarity Measurement | \n\n\n**\ud83d\udca1 You can find more third-party embeddings trained with AnglE in [HuggingFace Collection](https://huggingface.co/collections/SeanLee97/angle-based-embeddings-669a181354729d168a6ead9b)**\n\n\n## \ud83d\ude80 Quick Start\n\n### \u2b07\ufe0f Installation\n\n```bash\npython -m pip install -U angle-emb\n```\n\n### \u231b Infer BERT-based Model\n[](https://colab.research.google.com/drive/1QJcA2Mvive4pBxWweTpZz9OgwvE42eJZ?usp=sharing)\n\n\n1) **With Prompts**: You can specify a prompt with `prompt=YOUR_PROMPT` in `encode` method. If set a prompt, the inputs should be a list of dict or a single dict with key `text`, where `text` is the placeholder in the prompt for the input text. You can use other placeholder names. We provide a set of predefined prompts in `Prompts` class, you can check them via `Prompts.list_prompts()`.\n\n```python\nfrom angle_emb import AnglE, Prompts\nfrom angle_emb.utils import cosine_similarity\n\n\nangle = AnglE.from_pretrained('WhereIsAI/UAE-Large-V1', pooling_strategy='cls').cuda()\n# For retrieval tasks, we use `Prompts.C` as the prompt for the query when using UAE-Large-V1 (no need to specify prompt for documents).\n# When specify prompt, the inputs should be a list of dict with key 'text'\nqv = angle.encode({'text': 'what is the weather?'}, to_numpy=True, prompt=Prompts.C)\ndoc_vecs = angle.encode([\n 'The weather is great!',\n 'it is rainy today.',\n 'i am going to bed'\n], to_numpy=True)\n\nfor dv in doc_vecs:\n print(cosine_similarity(qv[0], dv))\n```\n\n2) **Without Prompts**: no need to specify a prompt. Just input a list of strings or a single string.\n\n```python\nfrom angle_emb import AnglE\nfrom angle_emb.utils import cosine_similarity\n\n\nangle = AnglE.from_pretrained('WhereIsAI/UAE-Large-V1', pooling_strategy='cls').cuda()\n# for non-retrieval tasks, we don't need to specify prompt when using UAE-Large-V1.\ndoc_vecs = angle.encode([\n 'The weather is great!',\n 'The weather is very good!',\n 'i am going to bed'\n])\n\nfor i, dv1 in enumerate(doc_vecs):\n for dv2 in doc_vecs[i+1:]:\n print(cosine_similarity(dv1, dv2))\n```\n\n\n### \u231b Infer LLM-based Models\n[](https://colab.research.google.com/drive/1QJcA2Mvive4pBxWweTpZz9OgwvE42eJZ?usp=sharing)\n\nIf the pretrained weight is a LoRA-based model, you need to specify the backbone via `model_name_or_path` and specify the LoRA path via the `pretrained_lora_path` in `from_pretrained` method. \n\n```python\nimport torch\nfrom angle_emb import AnglE, Prompts\nfrom angle_emb.utils import cosine_similarity\n\nangle = AnglE.from_pretrained('NousResearch/Llama-2-7b-hf',\n pretrained_lora_path='SeanLee97/angle-llama-7b-nli-v2',\n pooling_strategy='last',\n is_llm=True,\n torch_dtype=torch.float16).cuda()\nprint('All predefined prompts:', Prompts.list_prompts())\ndoc_vecs = angle.encode([\n {'text': 'The weather is great!'},\n {'text': 'The weather is very good!'},\n {'text': 'i am going to bed'}\n], prompt=Prompts.A)\n\nfor i, dv1 in enumerate(doc_vecs):\n for dv2 in doc_vecs[i+1:]:\n print(cosine_similarity(dv1, dv2))\n```\n\n\n### \u231b Infer BiLLM-based Models\n[](https://colab.research.google.com/drive/1QJcA2Mvive4pBxWweTpZz9OgwvE42eJZ?usp=sharing)\n\nSpecify `apply_billm` and `billm_model_class` to load and infer billm models\n\n\n```python\nimport os\n# set an environment variable for billm start index\nos.environ['BiLLM_START_INDEX'] = '31'\n\nimport torch\nfrom angle_emb import AnglE, Prompts\nfrom angle_emb.utils import cosine_similarity\n\n# specify `apply_billm` and `billm_model_class` to load billm models\nangle = AnglE.from_pretrained('NousResearch/Llama-2-7b-hf',\n pretrained_lora_path='SeanLee97/bellm-llama-7b-nli',\n pooling_strategy='last',\n is_llm=True,\n apply_billm=True,\n billm_model_class='LlamaForCausalLM',\n torch_dtype=torch.float16).cuda()\n\ndoc_vecs = angle.encode([\n {'text': 'The weather is great!'},\n {'text': 'The weather is very good!'},\n {'text': 'i am going to bed'}\n], prompt='The representative word for sentence {text} is:\"')\n\nfor i, dv1 in enumerate(doc_vecs):\n for dv2 in doc_vecs[i+1:]:\n print(cosine_similarity(dv1, dv2))\n```\n\n\n### \u231b Infer Espresso/Matryoshka Models\n[](https://colab.research.google.com/drive/1QJcA2Mvive4pBxWweTpZz9OgwvE42eJZ?usp=sharing)\n\nSpecify `layer_index` and `embedding_size` to truncate embeddings.\n\n\n```python\nfrom angle_emb import AnglE\nfrom angle_emb.utils import cosine_similarity\n\n\nangle = AnglE.from_pretrained('mixedbread-ai/mxbai-embed-2d-large-v1', pooling_strategy='cls').cuda()\n# truncate layer\nangle = angle.truncate_layer(layer_index=22)\n# specify embedding size to truncate embeddings\ndoc_vecs = angle.encode([\n 'The weather is great!',\n 'The weather is very good!',\n 'i am going to bed'\n], embedding_size=768)\n\nfor i, dv1 in enumerate(doc_vecs):\n for dv2 in doc_vecs[i+1:]:\n print(cosine_similarity(dv1, dv2))\n```\n\n### \u231b Infer Third-party Models\n\nYou can load any transformer-based third-party models such as `mixedbread-ai/mxbai-embed-large-v1`, `sentence-transformers/all-MiniLM-L6-v2`, and `BAAI/bge-large-en-v1.5` using `angle_emb`.\n\nHere is an example:\n\n```python\nfrom angle_emb import AnglE\n\nmodel = AnglE.from_pretrained('mixedbread-ai/mxbai-embed-large-v1', pooling_strategy='cls').cuda()\nvec = model.encode('hello world', to_numpy=True)\nprint(vec)\n```\n\n## Batch Inference\n\nIt is recommended to use Mixedbread's `batched` library to speed up the inference process.\n\n```bash\npython -m pip install batched\n```\n\n```python\nimport batched\nfrom angle_emb import AnglE\n\nmodel = AnglE.from_pretrained(\"WhereIsAI/UAE-Large-V1\", pooling_strategy='cls').cuda()\nmodel.encode = batched.dynamically(model.encode, batch_size=64)\n\nvecs = model.encode([\n 'The weather is great!',\n 'The weather is very good!',\n 'i am going to bed'\n] * 50)\n```\n\n## \ud83d\udd78\ufe0f Custom Train\n\n\ud83d\udca1 For more details, please refer to the [training and fintuning](https://angle.readthedocs.io/en/latest/notes/training.html).\n\n\n### \ud83d\uddc2\ufe0f 1. Data Prepation\n\nWe currently support three dataset formats:\n\n1) `DatasetFormats.A`: it is a pair format with three columns: `text1`, `text2`, and `label` (0/1).\n\n2) `DatasetFormats.B`: it is a triple format with three columns: `text`, `positive`, and `negative`. `positive` and `negative` store the positive and negative samples of `text`.\n\n3) `DatasetFormats.C`: it is a pair format with two columns: `text`, `positive`. `positive` store the positive sample of `text`.\n\nYou need to prepare your data into huggingface `datasets.Dataset` in one of the formats in terms of your supervised data.\n\n### \ud83d\ude82 2. Train with CLI [Recommended]\n\nUse `angle-trainer` to train your AnglE model in cli mode. \n\n1) Single gpu training:\n\nUsage: \n\n```bash\nCUDA_VISIBLE_DEVICES=0 angle-trainer --help\n```\n\n2) Multi-gpu training:\n\nUsage:\n\n```bash\nCUDA_VISIBLE_DEVICES=0,1 torchrun --nproc_per_node=2 --master_port=1234 -m angle_emb.angle_trainer --help\n```\n\n### \ud83d\ude82 3. Custom Train\n\n[](https://colab.research.google.com/drive/1h28jHvv_x-0fZ0tItIMjf8rJGp3GcO5V?usp=sharing)\n\n\n```python\nfrom datasets import load_dataset\nfrom angle_emb import AnglE, AngleDataTokenizer\n\n\n# 1. load pretrained model\nangle = AnglE.from_pretrained('SeanLee97/angle-bert-base-uncased-nli-en-v1', max_length=128, pooling_strategy='cls').cuda()\n\n# 2. load dataset\n# `text1`, `text2`, and `label` are three required columns.\nds = load_dataset('mteb/stsbenchmark-sts')\nds = ds.map(lambda obj: {\"text1\": str(obj[\"sentence1\"]), \"text2\": str(obj['sentence2']), \"label\": obj['score']})\nds = ds.select_columns([\"text1\", \"text2\", \"label\"])\n\n# 3. transform data\ntrain_ds = ds['train'].shuffle().map(AngleDataTokenizer(angle.tokenizer, angle.max_length), num_proc=8)\nvalid_ds = ds['validation'].map(AngleDataTokenizer(angle.tokenizer, angle.max_length), num_proc=8)\n\n# 4. fit\nangle.fit(\n train_ds=train_ds,\n valid_ds=valid_ds,\n output_dir='ckpts/sts-b',\n batch_size=32,\n epochs=5,\n learning_rate=2e-5,\n save_steps=100,\n eval_steps=1000,\n warmup_steps=0,\n gradient_accumulation_steps=1,\n loss_kwargs={\n 'cosine_w': 1.0,\n 'ibn_w': 1.0,\n 'cln_w': 1.0,\n 'angle_w': 0.02,\n 'cosine_tau': 20,\n 'ibn_tau': 20,\n 'angle_tau': 20\n },\n fp16=True,\n logging_steps=100\n)\n\n# 5. evaluate\ncorrcoef = angle.evaluate(ds['test'])\nprint('Spearman\\'s corrcoef:', corrcoef)\n```\n\n### \ud83d\udca1 Others\n\n- To enable `llm` training, please specify `--is_llm 1` and configure appropriate LoRA hyperparameters.\n- To enable `billm` training, please specify `--apply_billm 1` and configure appropriate `billm_model_class` such as `LLamaForCausalLM` (refer to: https://github.com/WhereIsAI/BiLLM?tab=readme-ov-file#usage).\n- To enable espresso sentence embeddings (ESE), please specify `--apply_ese 1` and configure appropriate ESE hyperparameters via `--ese_kl_temperature float` and `--ese_compression_size integer`.\n- To convert the trained AnglE models to `sentence-transformers`, please run `python scripts/convert_to_sentence_transformers.py --help` for more details.\n\n\n## \ud83d\udca1 4. Fine-tuning Tips\n\nFor more details, please refer to the [documentation](https://angle.readthedocs.io/en/latest/notes/training.html#fine-tuning-tips).\n\n1\ufe0f\u20e3 If your dataset format is `DatasetFormats.A`, it is recommended to slightly increase the weight for `cosine_w` or slightly decrease the weight for `ibn_w`.\n\n2\ufe0f\u20e3 If your dataset format is `DatasetFormats.B`, it is recommended to set `cosine_w` to 0, and set `angle_w` to a small value like 0.02. Be sure to set `cln_w` and `ibn_w`.\n\n3\ufe0f\u20e3 If your dataset format is `DatasetFormats.C`, only `ibn_w` and `ibn_tau` are effective. You don't need to tune other parameters.\n\n4\ufe0f\u20e3 To alleviate information forgetting in fine-tuning, it is better to specify the `teacher_name_or_path`. If the `teacher_name_or_path` equals `model_name_or_path`, it will conduct self-distillation. **It is worth to note that** `teacher_name_or_path` has to have the same tokenizer as `model_name_or_path`. Or it will lead to unexpected results.\n\n\n## 5. Finetuning and Infering AnglE with `sentence-transformers`\n\n- **Training:** SentenceTransformers also provides a implementation of [AnglE loss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#angleloss). **But it is partially implemented and may not work well as the official code. We recommend to use the official `angle_emb` for fine-tuning AnglE model.**\n\n- **Infering:** If your model is trained with `angle_emb`, and you want to use it with `sentence-transformers`. You can convert it to `sentence-transformers` model using the script `examples/convert_to_sentence_transformers.py`.\n\n\n# \ud83e\udee1 Citation\n\nYou are welcome to use our code and pre-trained models. If you use our code and pre-trained models, please support us by citing our work as follows:\n\n```bibtex\n@article{li2023angle,\n title={AnglE-optimized Text Embeddings},\n author={Li, Xianming and Li, Jing},\n journal={arXiv preprint arXiv:2309.12871},\n year={2023}\n}\n```\n\n# \ud83d\udcdc ChangeLogs\n\n| \ud83d\udcc5 | Description |\n|----|------|\n| 2024 May 21 | support Espresso Sentence Embeddings |\n| 2024 Feb 7 | support training with only positive pairs (`DatasetFormats.C`) |\n| 2023 Dec 4 | Release a universal English sentence embedding model: [WhereIsAI/UAE-Large-V1](https://huggingface.co/WhereIsAI/UAE-Large-V1) |\n| 2023 Nov 2 | Release an English pretrained model: `SeanLee97/angle-llama-13b-nli` |\n| 2023 Oct 28 | Release two chinese pretrained models: `SeanLee97/angle-roberta-wwm-base-zhnli-v1` and `SeanLee97/angle-llama-7b-zhnli-v1`; Add chinese README.md |\n\n# \ud83d\udce7 Contact\n\nIf you have any questions or suggestions, please feel free to contact us via email: xmlee97@gmail.com\n\n# \u00a9 License\n\nThis project is licensed under the MIT License.\nFor the pretrained models, please refer to the corresponding license of the models.\n",
"bugtrack_url": null,
"license": null,
"summary": "AnglE-optimize Text Embeddings",
"version": "0.5.6",
"project_urls": null,
"split_keywords": [
"angle_emb"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "8bae730858e831f6b9f4b1bf62e967905d5053d922e7676b32cf070da3912713",
"md5": "5e234f9e75318c99d50cda44bbc71c88",
"sha256": "e0ce21c502101772e64bebbb143da02894d946113df35ab1a25471d017182d2b"
},
"downloads": -1,
"filename": "angle_emb-0.5.6-py3-none-any.whl",
"has_sig": false,
"md5_digest": "5e234f9e75318c99d50cda44bbc71c88",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 29659,
"upload_time": "2025-01-15T06:14:13",
"upload_time_iso_8601": "2025-01-15T06:14:13.888047Z",
"url": "https://files.pythonhosted.org/packages/8b/ae/730858e831f6b9f4b1bf62e967905d5053d922e7676b32cf070da3912713/angle_emb-0.5.6-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a98ccf951980ca0109576a62f35975656c1d6bc3d19b5f85578b30b438f63242",
"md5": "8040ad4aa1f263a9bd6c28b5315c52fe",
"sha256": "88b3b96bcdf48a7b133ae5775392005cf9088e8829f9e7555a9ee784c66ecad1"
},
"downloads": -1,
"filename": "angle_emb-0.5.6.tar.gz",
"has_sig": false,
"md5_digest": "8040ad4aa1f263a9bd6c28b5315c52fe",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 34636,
"upload_time": "2025-01-15T06:14:16",
"upload_time_iso_8601": "2025-01-15T06:14:16.795190Z",
"url": "https://files.pythonhosted.org/packages/a9/8c/cf951980ca0109576a62f35975656c1d6bc3d19b5f85578b30b438f63242/angle_emb-0.5.6.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-15 06:14:16",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "angle-emb"
}