Name | angr JSON |
Version |
9.2.133
JSON |
| download |
home_page | https://github.com/angr/angr |
Summary | A multi-architecture binary analysis toolkit, with the ability to perform dynamic symbolic execution and various static analyses on binaries |
upload_time | 2024-12-17 17:26:39 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.10 |
license | BSD-2-Clause |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# angr
[![Latest Release](https://img.shields.io/pypi/v/angr.svg)](https://pypi.python.org/pypi/angr/)
[![Python Version](https://img.shields.io/pypi/pyversions/angr)](https://pypi.python.org/pypi/angr/)
[![PyPI Statistics](https://img.shields.io/pypi/dm/angr.svg)](https://pypistats.org/packages/angr)
[![License](https://img.shields.io/github/license/angr/angr.svg)](https://github.com/angr/angr/blob/master/LICENSE)
angr is a platform-agnostic binary analysis framework.
It is brought to you by [the Computer Security Lab at UC Santa Barbara](https://seclab.cs.ucsb.edu), [SEFCOM at Arizona State University](https://sefcom.asu.edu), their associated CTF team, [Shellphish](https://shellphish.net), the open source community, and **[@rhelmot](https://github.com/rhelmot)**.
## Project Links
Homepage: https://angr.io
Project repository: https://github.com/angr/angr
Documentation: https://docs.angr.io
API Documentation: https://api.angr.io/en/latest/
## What is angr?
angr is a suite of Python 3 libraries that let you load a binary and do a lot of cool things to it:
- Disassembly and intermediate-representation lifting
- Program instrumentation
- Symbolic execution
- Control-flow analysis
- Data-dependency analysis
- Value-set analysis (VSA)
- Decompilation
The most common angr operation is loading a binary: `p = angr.Project('/bin/bash')` If you do this in an enhanced REPL like IPython, you can use tab-autocomplete to browse the [top-level-accessible methods](https://docs.angr.io/docs/toplevel) and their docstrings.
The short version of "how to install angr" is `mkvirtualenv --python=$(which python3) angr && python -m pip install angr`.
## Example
angr does a lot of binary analysis stuff.
To get you started, here's a simple example of using symbolic execution to get a flag in a CTF challenge.
```python
import angr
project = angr.Project("angr-doc/examples/defcamp_r100/r100", auto_load_libs=False)
@project.hook(0x400844)
def print_flag(state):
print("FLAG SHOULD BE:", state.posix.dumps(0))
project.terminate_execution()
project.execute()
```
# Quick Start
- [Install Instructions](https://docs.angr.io/introductory-errata/install)
- Documentation as [HTML](https://docs.angr.io/) and sources in the angr [Github repository](https://github.com/angr/angr/tree/master/docs)
- Dive right in: [top-level-accessible methods](https://docs.angr.io/core-concepts/toplevel)
- [Examples using angr to solve CTF challenges](https://docs.angr.io/examples).
- [API Reference](https://angr.io/api-doc/)
- [awesome-angr repo](https://github.com/degrigis/awesome-angr)
Raw data
{
"_id": null,
"home_page": "https://github.com/angr/angr",
"name": "angr",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": null,
"author": null,
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/9c/1a/69ac83dd60d9a73a07c211e2a4507913368b50041ff4dda90a479dbb6bb6/angr-9.2.133.tar.gz",
"platform": null,
"description": "# angr\n\n[![Latest Release](https://img.shields.io/pypi/v/angr.svg)](https://pypi.python.org/pypi/angr/)\n[![Python Version](https://img.shields.io/pypi/pyversions/angr)](https://pypi.python.org/pypi/angr/)\n[![PyPI Statistics](https://img.shields.io/pypi/dm/angr.svg)](https://pypistats.org/packages/angr)\n[![License](https://img.shields.io/github/license/angr/angr.svg)](https://github.com/angr/angr/blob/master/LICENSE)\n\nangr is a platform-agnostic binary analysis framework.\nIt is brought to you by [the Computer Security Lab at UC Santa Barbara](https://seclab.cs.ucsb.edu), [SEFCOM at Arizona State University](https://sefcom.asu.edu), their associated CTF team, [Shellphish](https://shellphish.net), the open source community, and **[@rhelmot](https://github.com/rhelmot)**.\n\n## Project Links\nHomepage: https://angr.io\n\nProject repository: https://github.com/angr/angr\n\nDocumentation: https://docs.angr.io\n\nAPI Documentation: https://api.angr.io/en/latest/\n\n## What is angr?\n\nangr is a suite of Python 3 libraries that let you load a binary and do a lot of cool things to it:\n\n- Disassembly and intermediate-representation lifting\n- Program instrumentation\n- Symbolic execution\n- Control-flow analysis\n- Data-dependency analysis\n- Value-set analysis (VSA)\n- Decompilation\n\nThe most common angr operation is loading a binary: `p = angr.Project('/bin/bash')` If you do this in an enhanced REPL like IPython, you can use tab-autocomplete to browse the [top-level-accessible methods](https://docs.angr.io/docs/toplevel) and their docstrings.\n\nThe short version of \"how to install angr\" is `mkvirtualenv --python=$(which python3) angr && python -m pip install angr`.\n\n## Example\n\nangr does a lot of binary analysis stuff.\nTo get you started, here's a simple example of using symbolic execution to get a flag in a CTF challenge.\n\n```python\nimport angr\n\nproject = angr.Project(\"angr-doc/examples/defcamp_r100/r100\", auto_load_libs=False)\n\n@project.hook(0x400844)\ndef print_flag(state):\n print(\"FLAG SHOULD BE:\", state.posix.dumps(0))\n project.terminate_execution()\n\nproject.execute()\n```\n\n# Quick Start\n\n- [Install Instructions](https://docs.angr.io/introductory-errata/install)\n- Documentation as [HTML](https://docs.angr.io/) and sources in the angr [Github repository](https://github.com/angr/angr/tree/master/docs)\n- Dive right in: [top-level-accessible methods](https://docs.angr.io/core-concepts/toplevel)\n- [Examples using angr to solve CTF challenges](https://docs.angr.io/examples).\n- [API Reference](https://angr.io/api-doc/)\n- [awesome-angr repo](https://github.com/degrigis/awesome-angr)\n",
"bugtrack_url": null,
"license": "BSD-2-Clause",
"summary": "A multi-architecture binary analysis toolkit, with the ability to perform dynamic symbolic execution and various static analyses on binaries",
"version": "9.2.133",
"project_urls": {
"Homepage": "https://github.com/angr/angr"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "a9c79e121ef818580281f4da66813a1d702bc9f400f413a35e9d0c16d38e9e62",
"md5": "757b06239147256896e3f87999c12155",
"sha256": "3e2964fcd583982097852d00a4710a0bc79b22db7d5eefe7c4d07feebd18d082"
},
"downloads": -1,
"filename": "angr-9.2.133-py3-none-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "757b06239147256896e3f87999c12155",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 9654984,
"upload_time": "2024-12-17T17:25:50",
"upload_time_iso_8601": "2024-12-17T17:25:50.516614Z",
"url": "https://files.pythonhosted.org/packages/a9/c7/9e121ef818580281f4da66813a1d702bc9f400f413a35e9d0c16d38e9e62/angr-9.2.133-py3-none-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "6ca1cde2f7301f06fc1c52a152ac5c6c73b727979e96cf8135515d30759f73b2",
"md5": "1bd4eef05a719d14db2d66455c13a2ae",
"sha256": "03b91f98a767d62d31fc5b28c9ed09a13567341f6b9b42da25c040e1ed03f2e5"
},
"downloads": -1,
"filename": "angr-9.2.133-py3-none-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "1bd4eef05a719d14db2d66455c13a2ae",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 8724721,
"upload_time": "2024-12-17T17:25:55",
"upload_time_iso_8601": "2024-12-17T17:25:55.806755Z",
"url": "https://files.pythonhosted.org/packages/6c/a1/cde2f7301f06fc1c52a152ac5c6c73b727979e96cf8135515d30759f73b2/angr-9.2.133-py3-none-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "810bfbd3bfa8e2884b4a09a3c3f556f3847ac22b267188e20ad2a63ed73917ee",
"md5": "cd84bb665f109d053b1f3f5f047870ff",
"sha256": "9ba948f32143b7239e5d26e794d00452bd21a253bedeb9e972be7882f7c50a33"
},
"downloads": -1,
"filename": "angr-9.2.133-py3-none-manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "cd84bb665f109d053b1f3f5f047870ff",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 11149373,
"upload_time": "2024-12-17T17:25:59",
"upload_time_iso_8601": "2024-12-17T17:25:59.121071Z",
"url": "https://files.pythonhosted.org/packages/81/0b/fbd3bfa8e2884b4a09a3c3f556f3847ac22b267188e20ad2a63ed73917ee/angr-9.2.133-py3-none-manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "2fdee3c71bd676a733d73239ada1faf5de60dfc014f6ea8b5bf13f9dc876d6e8",
"md5": "47c512652e280c80a28e573859d84bd1",
"sha256": "74199adc2aa1b122bf6b75365eb622a1fa6a76ed2d5d21a66f6119b5340fc3bb"
},
"downloads": -1,
"filename": "angr-9.2.133-py3-none-manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "47c512652e280c80a28e573859d84bd1",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 11557055,
"upload_time": "2024-12-17T17:26:02",
"upload_time_iso_8601": "2024-12-17T17:26:02.806343Z",
"url": "https://files.pythonhosted.org/packages/2f/de/e3c71bd676a733d73239ada1faf5de60dfc014f6ea8b5bf13f9dc876d6e8/angr-9.2.133-py3-none-manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b1212b8a4f58eb22306a7f108637d9d9575ca81518d6885ed9838b5b7006f7dd",
"md5": "2ed5194cb4b01a792dccf5ad7053d7e0",
"sha256": "b53a36c2978584af5689a73930d774d5f0667950647fd98d341b9f05260cbf53"
},
"downloads": -1,
"filename": "angr-9.2.133-py3-none-win_amd64.whl",
"has_sig": false,
"md5_digest": "2ed5194cb4b01a792dccf5ad7053d7e0",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 9183764,
"upload_time": "2024-12-17T17:26:05",
"upload_time_iso_8601": "2024-12-17T17:26:05.914536Z",
"url": "https://files.pythonhosted.org/packages/b1/21/2b8a4f58eb22306a7f108637d9d9575ca81518d6885ed9838b5b7006f7dd/angr-9.2.133-py3-none-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "9c1a69ac83dd60d9a73a07c211e2a4507913368b50041ff4dda90a479dbb6bb6",
"md5": "b9ed3092386801ad5e16afd3a4bb6d82",
"sha256": "e909b95b9efdee665996fd545024fb4e2290e9d14e9c039cf8746f1be2496e01"
},
"downloads": -1,
"filename": "angr-9.2.133.tar.gz",
"has_sig": false,
"md5_digest": "b9ed3092386801ad5e16afd3a4bb6d82",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 3103796,
"upload_time": "2024-12-17T17:26:39",
"upload_time_iso_8601": "2024-12-17T17:26:39.812078Z",
"url": "https://files.pythonhosted.org/packages/9c/1a/69ac83dd60d9a73a07c211e2a4507913368b50041ff4dda90a479dbb6bb6/angr-9.2.133.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-17 17:26:39",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "angr",
"github_project": "angr",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "angr"
}