annb


Nameannb JSON
Version 0.1.22 PyPI version JSON
download
home_pagehttps://github.com/matrixji/annb
SummaryA simple ANN benchmark tools
upload_time2023-12-14 12:07:21
maintainer
docs_urlNone
authorJi Bin
requires_python>=3.6
licenseApache-2.0
keywords ann benchmark test tools
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ANNB: Approximate Nearest Neighbor Benchmark

[![PyPI Version](https://img.shields.io/pypi/v/annb.svg)](https://pypi.python.org/pypi/annb)

Note: This is a work in progress. The API/CLI is not stable yet.

## Installation

```bash
pip install annb

# install vector search index/client you may need for benchmark
# e.g install faiss for run faiss index benchmark
```

## Usage

### CLI Usage

#### Run Benchmark

##### start first benchmark with a randome dataset.

Just run `annb-test` to start your first benchmark with a random dataset.

```bash
annb-test
```

It will produce a result like this:

```plain
❯ annb-test
... some logs ...

BenchmarkResult:
  attributes:
    query_args: [{'nprobe': 1}]
    topk: 10
    jobs: 1
    loop: 5
    step: 10
    name: Test
    dataset: .annb_random_d256_l2_1000.hdf5
    index: Test
    dim: 256
    metric_type: MetricType.L2
    index_args: {'index': 'ivfflat', 'nlist': 128}
    started: 2023-08-14 13:03:40

  durations:
    training: 1 items, 1000 total, 1490.03266ms
    insert: 1 items, 1000 total, 132.439627ms
    query:
      nprobe=1,recall=0.2173 -> 1000 items, 18.615083ms, 53719.878659686874qps, latency=0.18615083ms, p95=0.31939ms, p99=0.41488ms
```

This is a simple benchmark test with default index(faiss) with random l2 dataset.
If you wants to generate more data or with some different specifications for the dataset, you could see below options:
  - --index-dim         The dimension of the index, default is 256
  - --index-metric-type   Index metric type, l2 or ip, default is l2
  - --topk TOPK           topk used for query, default is 10
  - --step STEP           the query step, default annb will query 10 items per query, you could set it to 0 for query all items in one query (similar like batch for ann-benchmarks)
  - --batch               batch mode, alias --step 0
  - --count COUNT         the total number of items in the dataset, default is 1000

##### run benchmark with a specific dataset

You could also use ann-benchmarks's [dataset](https://github.com/erikbern/ann-benchmarks#data-sets) to run benchmark. download them locally and run benchmark with `--dataset` option.

```bash
annb-test --dataset sift-128-euclidean.hdf5
```

##### run benchmark with query args
You mary benchmark with different query args, e.g. different nprobe for faiss ivfflat index. you could try `--query-args` option.

```bash
annb-test --query-args nprobe=10 --query-args nprobe=20
```

will output below result:

```plain
durations:
    training: 1 items, 1000 total, 1548.84968ms
    insert: 1 items, 1000 total, 143.402532ms
    query:
      nprobe=1,recall=0.2173 -> 1000 items, 20.074236ms, 49815.09632545916qps, latency=0.20074235999999998ms, p95=0.332276ms, p99=0.455525ms
      nprobe=10,recall=0.5221 -> 1000 items, 49.141931ms, 20349.2207092961qps, latency=0.49141931ms, p95=0.722628ms, p99=0.818012ms
      nprobe=20,recall=0.6861 -> 1000 items, 69.284072ms, 14433.331805324606qps, latency=0.69284072ms, p95=1.126946ms, p99=1.350359ms
```

##### run multiple benchmarks with config file
You may run multiple benchmarks with different index and dataset. you could use `--run-file` run benchmarks from a config file.

Below is a example config file:

config.yaml

```yaml
default:
  index_factory: annb.anns.faiss.indexes.index_under_test_factory
  index_factory_args: {}
  index_name: Test
  dataset: gist-960-euclidean.hdf5
  topk: 10
  step: 10
  jobs: 1
  loop: 2
  result: output.pth

runs:
  - name: faiss-gist960-gpu-ivfflat
    index_args:
      gpu: yes
      index: ivfflat
      nlist: 1024
    query_args:
      - nprobe: 1
      - nprobe: 16
      - nprobe: 256
  - name: faiss-gist960-gpu-ivfpq8
    index_args:
      gpu: yes
      index: ivfpq
      nlist: 1024
    query_args:
      - nprobe: 1
      - nprobe: 16
      - nprobe: 256
```

Explanation for above config file:
- The default section is the default config for all benchmarks.
- The config keys are generally same as the options for `annb-test` command. e.g. `index_factory` is same as `--index-factory`.
- You could define multiple benchmarks in `runs` section. and each run config will override the default config. In this example, we define use gist-960-euclidean.hdf5 as dataset, so it will use this dataset for all benchmarks. and we use different index and query args for each benchmark. for index_args, we use ivfflat(nlist=1024) and ivfpq(nlist=1024) as two benchmark series. and for query_args, we use nprobe=1,16,256 for each benchmark. That means we will run 6 benchmarks in total, each series will run 3 benchmarks with different nprobe.
- The result will be saved to output.pth file by default setting. Actually, each benchmark series will save to a separate file. so in this example, we will get two files: `output-1.pth` and `output-2.pth`. you could use `annb-report` to view them.


##### more options

You could use `annb-test --help` to see more options.

```bash
❯ annb-test --help
```


#### Check Benchmark Results

The `annb-report` is use to view benchmark results as plain/csv text, or export them to Chart graphic.

```bash
annb-report --help
```

##### examples for view/export benchmark results

view benchmark results as plain text

```bash
annb-report output.pth
```

view benchmark results as csv text

```bash
annb-report output.pth --format csv
```

export benchmark results to chart graphic(multiple series)

```bash
annb-report output.pth --format png --output output.png output-1.pth output-2.pth
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/matrixji/annb",
    "name": "annb",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "ANN benchmark,Test tools",
    "author": "Ji Bin",
    "author_email": "matrixji@live.com",
    "download_url": "https://files.pythonhosted.org/packages/21/d8/238cfeadea55fb9160abe3f57dee7767ebbd4659e7461839883cceed3442/annb-0.1.22.tar.gz",
    "platform": null,
    "description": "# ANNB: Approximate Nearest Neighbor Benchmark\n\n[![PyPI Version](https://img.shields.io/pypi/v/annb.svg)](https://pypi.python.org/pypi/annb)\n\nNote: This is a work in progress. The API/CLI is not stable yet.\n\n## Installation\n\n```bash\npip install annb\n\n# install vector search index/client you may need for benchmark\n# e.g install faiss for run faiss index benchmark\n```\n\n## Usage\n\n### CLI Usage\n\n#### Run Benchmark\n\n##### start first benchmark with a randome dataset.\n\nJust run `annb-test` to start your first benchmark with a random dataset.\n\n```bash\nannb-test\n```\n\nIt will produce a result like this:\n\n```plain\n\u276f annb-test\n... some logs ...\n\nBenchmarkResult:\n  attributes:\n    query_args: [{'nprobe': 1}]\n    topk: 10\n    jobs: 1\n    loop: 5\n    step: 10\n    name: Test\n    dataset: .annb_random_d256_l2_1000.hdf5\n    index: Test\n    dim: 256\n    metric_type: MetricType.L2\n    index_args: {'index': 'ivfflat', 'nlist': 128}\n    started: 2023-08-14 13:03:40\n\n  durations:\n    training: 1 items, 1000 total, 1490.03266ms\n    insert: 1 items, 1000 total, 132.439627ms\n    query:\n      nprobe=1,recall=0.2173 -> 1000 items, 18.615083ms, 53719.878659686874qps, latency=0.18615083ms, p95=0.31939ms, p99=0.41488ms\n```\n\nThis is a simple benchmark test with default index(faiss) with random l2 dataset.\nIf you wants to generate more data or with some different specifications for the dataset, you could see below options:\n  - --index-dim         The dimension of the index, default is 256\n  - --index-metric-type   Index metric type, l2 or ip, default is l2\n  - --topk TOPK           topk used for query, default is 10\n  - --step STEP           the query step, default annb will query 10 items per query, you could set it to 0 for query all items in one query (similar like batch for ann-benchmarks)\n  - --batch               batch mode, alias --step 0\n  - --count COUNT         the total number of items in the dataset, default is 1000\n\n##### run benchmark with a specific dataset\n\nYou could also use ann-benchmarks's [dataset](https://github.com/erikbern/ann-benchmarks#data-sets) to run benchmark. download them locally and run benchmark with `--dataset` option.\n\n```bash\nannb-test --dataset sift-128-euclidean.hdf5\n```\n\n##### run benchmark with query args\nYou mary benchmark with different query args, e.g. different nprobe for faiss ivfflat index. you could try `--query-args` option.\n\n```bash\nannb-test --query-args nprobe=10 --query-args nprobe=20\n```\n\nwill output below result:\n\n```plain\ndurations:\n    training: 1 items, 1000 total, 1548.84968ms\n    insert: 1 items, 1000 total, 143.402532ms\n    query:\n      nprobe=1,recall=0.2173 -> 1000 items, 20.074236ms, 49815.09632545916qps, latency=0.20074235999999998ms, p95=0.332276ms, p99=0.455525ms\n      nprobe=10,recall=0.5221 -> 1000 items, 49.141931ms, 20349.2207092961qps, latency=0.49141931ms, p95=0.722628ms, p99=0.818012ms\n      nprobe=20,recall=0.6861 -> 1000 items, 69.284072ms, 14433.331805324606qps, latency=0.69284072ms, p95=1.126946ms, p99=1.350359ms\n```\n\n##### run multiple benchmarks with config file\nYou may run multiple benchmarks with different index and dataset. you could use `--run-file` run benchmarks from a config file.\n\nBelow is a example config file:\n\nconfig.yaml\n\n```yaml\ndefault:\n  index_factory: annb.anns.faiss.indexes.index_under_test_factory\n  index_factory_args: {}\n  index_name: Test\n  dataset: gist-960-euclidean.hdf5\n  topk: 10\n  step: 10\n  jobs: 1\n  loop: 2\n  result: output.pth\n\nruns:\n  - name: faiss-gist960-gpu-ivfflat\n    index_args:\n      gpu: yes\n      index: ivfflat\n      nlist: 1024\n    query_args:\n      - nprobe: 1\n      - nprobe: 16\n      - nprobe: 256\n  - name: faiss-gist960-gpu-ivfpq8\n    index_args:\n      gpu: yes\n      index: ivfpq\n      nlist: 1024\n    query_args:\n      - nprobe: 1\n      - nprobe: 16\n      - nprobe: 256\n```\n\nExplanation for above config file:\n- The default section is the default config for all benchmarks.\n- The config keys are generally same as the options for `annb-test` command. e.g. `index_factory` is same as `--index-factory`.\n- You could define multiple benchmarks in `runs` section. and each run config will override the default config. In this example, we define use gist-960-euclidean.hdf5 as dataset, so it will use this dataset for all benchmarks. and we use different index and query args for each benchmark. for index_args, we use ivfflat(nlist=1024) and ivfpq(nlist=1024) as two benchmark series. and for query_args, we use nprobe=1,16,256 for each benchmark. That means we will run 6 benchmarks in total, each series will run 3 benchmarks with different nprobe.\n- The result will be saved to output.pth file by default setting. Actually, each benchmark series will save to a separate file. so in this example, we will get two files: `output-1.pth` and `output-2.pth`. you could use `annb-report` to view them.\n\n\n##### more options\n\nYou could use `annb-test --help` to see more options.\n\n```bash\n\u276f annb-test --help\n```\n\n\n#### Check Benchmark Results\n\nThe `annb-report` is use to view benchmark results as plain/csv text, or export them to Chart graphic.\n\n```bash\nannb-report --help\n```\n\n##### examples for view/export benchmark results\n\nview benchmark results as plain text\n\n```bash\nannb-report output.pth\n```\n\nview benchmark results as csv text\n\n```bash\nannb-report output.pth --format csv\n```\n\nexport benchmark results to chart graphic(multiple series)\n\n```bash\nannb-report output.pth --format png --output output.png output-1.pth output-2.pth\n```\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "A simple ANN benchmark tools",
    "version": "0.1.22",
    "project_urls": {
        "Homepage": "https://github.com/matrixji/annb"
    },
    "split_keywords": [
        "ann benchmark",
        "test tools"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b2876ac2a5fe95b75d50e45feb4f232e1e8ea2274f9520d294dd950d7d69dbe0",
                "md5": "4bfcc4e55745cf29536064a44da1e782",
                "sha256": "7f0fddae555bb880fb8eff8ec68a6b123cf88ebb79bf8f998a73b0a7cf72b803"
            },
            "downloads": -1,
            "filename": "annb-0.1.22-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "4bfcc4e55745cf29536064a44da1e782",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 28601,
            "upload_time": "2023-12-14T12:07:18",
            "upload_time_iso_8601": "2023-12-14T12:07:18.856407Z",
            "url": "https://files.pythonhosted.org/packages/b2/87/6ac2a5fe95b75d50e45feb4f232e1e8ea2274f9520d294dd950d7d69dbe0/annb-0.1.22-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "21d8238cfeadea55fb9160abe3f57dee7767ebbd4659e7461839883cceed3442",
                "md5": "c1eba54559b5c7b53538ee26cd0feddb",
                "sha256": "a097b2ef2167844d5bf8544df0d905fd26e9131ea8728f560ac641ebcc74302a"
            },
            "downloads": -1,
            "filename": "annb-0.1.22.tar.gz",
            "has_sig": false,
            "md5_digest": "c1eba54559b5c7b53538ee26cd0feddb",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 26336,
            "upload_time": "2023-12-14T12:07:21",
            "upload_time_iso_8601": "2023-12-14T12:07:21.223767Z",
            "url": "https://files.pythonhosted.org/packages/21/d8/238cfeadea55fb9160abe3f57dee7767ebbd4659e7461839883cceed3442/annb-0.1.22.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-12-14 12:07:21",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "matrixji",
    "github_project": "annb",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "annb"
}
        
Elapsed time: 0.65677s