# antares-results
This is a repository for spinor-helicity amplitudes reconstructed from numerical evaluations.
[](https://github.com/GDeLaurentis/antares-results/actions/workflows/ci_lint.yml)
[](https://github.com/GDeLaurentis/antares-results/actions/workflows/ci_test.yml)
[](https://gdelaurentis.github.io/antares-results/)
[](https://pypi.org/project/antares-results/)
[](https://pypi.org/project/antares-results/)
[](https://doi.org/10.5281/zenodo.14536697)
<!-- [](https://github.com/GDeLaurentis/antares-results/actions) -->
## Quick Start
### Vjj (two-loops planar)
Load all $qggqV$ coefficients and evaluate them (for exmaple at a $\mathbb{F}_p$ phase space point). These are a basis of the vector space of pentagon-function coefficients.
```python
In [1]: from antares_results.Vjj.qggqll.mhv import lTerms
In [2]: from lips import Particles
In [3]: from syngular import Field
# print analytic expressions for the first 5 rational functions in the basis of the vector space of pentagon-function coefficients
In [4]: print(lTerms[:5])
Out [4]: [Terms("""+(+1⟨4|6⟩²)/(⟨1|2⟩⟨2|3⟩⟨3|4⟩⟨5|6⟩)"""), Terms("""+(+1⟨4|6⟩⟨1|4⟩[1|5])/(⟨1|2⟩⟨2|3⟩⟨3|4⟩⟨1|5+6|1])"""), Terms("""+(-1⟨1|6⟩[2|3]⟨4|6⟩)/(⟨1|3⟩⟨2|3⟩⟨5|6⟩⟨1|2+4|3])"""), Terms("""+(+1[2|3]⟨4|6⟩⟨2|6⟩)/(⟨1|2⟩⟨2|3⟩⟨5|6⟩⟨2|3+4|2])"""), Terms("""+(+1⟨3|6⟩[2|3]⟨4|6⟩)/(⟨1|3⟩⟨2|3⟩⟨5|6⟩⟨3|2+4|3])""")]
# generate a random phase space point (in this case over finite fields) and evaluate the basis
In [5]: oPs = Particles(6, field=Field("finite field", 2 ** 31 - 1, 1), seed=0)
In [6]: lTerms(oPs)
Out [4]: [1162389822 % 2147483647, 1610387318 % 2147483647, 173910601 % 2147483647, 1377129258 % 2147483647, 2082634606 % 2147483647, ...]
```
Floating point (real or complex) and $p$-adic phase space points work much in the same way.
### ttH (one-loop)
Load all $qqttH$ coefficients. These are directly coefficients of the respective Feynman integrals (labeld by external legs and internal mass routings).
```python
In [1]: from antares_results.ttH.qqttH.pm import coeffs as qqttH_pm_coeffs
In [2]: qqttH_pm_coeffs.keys()
Out [2]: dict_keys(['tree', 'bub12x00', 'tri12x3x00m', 'box3x12x4xm00m', 'tri13x24xm0m', 'box3x4x12xm0mm', 'box3x1x24xm00m', 'bub13xm0', 'bub34xmm', 'tri124x3xm0m', 'bub1234xmm', 'tri12x3xmm0', 'bub123xm0', 'box4x2x1xm000', 'tri12x34xmmm', 'bub12xmm'])
In [3]: from antares_results.ttH.momenta import oPsKCheck # load a phase space point
In [4]: {key: val(oPsKCheck) for key, val in qqttH_pm_coeffs.items()}
Out[4]:
{'tree': mpc(real='0.4998512132360710056', imag='0.1143902001899784471'),
'bub12x00': mpc(real='0.08890670891584541782', imag='3.486530065803925438'),
'tri12x3x00m': mpc(real='48.35977263849211738', imag='53.33641975568919236'),
'box3x12x4xm00m': mpc(real='-47.46308257461350877', imag='-45.87188967765678171'),
'tri13x24xm0m': mpc(real='-12.70147396497987757', imag='2.465657548592817883'),
'box3x4x12xm0mm': mpc(real='-0.8736344184540660862', imag='-9.246218431210708744'),
'box3x1x24xm00m': mpc(real='25.39062949179914419', imag='-8.492255173857109485'),
'bub13xm0': mpc(real='0.07829108262369600946', imag='-0.1842325910625640072'),
'bub34xmm': mpc(real='0.1032547846538197367', imag='0.3591837975251150339'),
'tri124x3xm0m': mpc(real='5.625101060149315213', imag='1.58915938402978163'),
'bub1234xmm': mpc(real='-0.820858500734524571', imag='-0.03028493471636876586'),
'tri12x3xmm0': mpc(real='-6.615318666263966363', imag='-8.927541807153011488'),
'bub123xm0': mpc(real='0.6853493549121706108', imag='-1.404274244486850426'),
'box4x2x1xm000': mpc(real='-90.29617792252767927', imag='6.479713760815963397'),
'tri12x34xmmm': mpc(real='-4.354721966504684239', imag='-3.285466744291004104'),
'bub12xmm': mpc(real='-0.3362765929597263115', imag='-0.4684054239865742472')}
```
### jjj (two-loops full-color)
Analogous to $Vjj$.
### jjjj (one-loop)
Analogous to $ttH$.
Raw data
{
"_id": null,
"home_page": "https://github.com/GDeLaurentis/antares-results",
"name": "antares-results",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "Spinor Helicity, Scattering Amplitudes",
"author": "Giuseppe De Laurentis",
"author_email": "g.dl@hotmail.it",
"download_url": "https://files.pythonhosted.org/packages/fe/18/c10260ba51440516fa427041888ca531f9bca092360469c5e47aaac64091/antares-results-0.0.4.tar.gz",
"platform": null,
"description": "# antares-results\nThis is a repository for spinor-helicity amplitudes reconstructed from numerical evaluations.\n\n[](https://github.com/GDeLaurentis/antares-results/actions/workflows/ci_lint.yml)\n[](https://github.com/GDeLaurentis/antares-results/actions/workflows/ci_test.yml)\n[](https://gdelaurentis.github.io/antares-results/)\n[](https://pypi.org/project/antares-results/)\n[](https://pypi.org/project/antares-results/)\n[](https://doi.org/10.5281/zenodo.14536697)\n<!-- [](https://github.com/GDeLaurentis/antares-results/actions) -->\n\n\n## Quick Start\n\n### Vjj (two-loops planar)\n\nLoad all $qggqV$ coefficients and evaluate them (for exmaple at a $\\mathbb{F}_p$ phase space point). These are a basis of the vector space of pentagon-function coefficients.\n\n```python\nIn [1]: from antares_results.Vjj.qggqll.mhv import lTerms\nIn [2]: from lips import Particles\nIn [3]: from syngular import Field\n\n# print analytic expressions for the first 5 rational functions in the basis of the vector space of pentagon-function coefficients\nIn [4]: print(lTerms[:5])\nOut [4]: [Terms(\"\"\"+(+1\u27e84|6\u27e9\u00b2)/(\u27e81|2\u27e9\u27e82|3\u27e9\u27e83|4\u27e9\u27e85|6\u27e9)\"\"\"), Terms(\"\"\"+(+1\u27e84|6\u27e9\u27e81|4\u27e9[1|5])/(\u27e81|2\u27e9\u27e82|3\u27e9\u27e83|4\u27e9\u27e81|5+6|1])\"\"\"), Terms(\"\"\"+(-1\u27e81|6\u27e9[2|3]\u27e84|6\u27e9)/(\u27e81|3\u27e9\u27e82|3\u27e9\u27e85|6\u27e9\u27e81|2+4|3])\"\"\"), Terms(\"\"\"+(+1[2|3]\u27e84|6\u27e9\u27e82|6\u27e9)/(\u27e81|2\u27e9\u27e82|3\u27e9\u27e85|6\u27e9\u27e82|3+4|2])\"\"\"), Terms(\"\"\"+(+1\u27e83|6\u27e9[2|3]\u27e84|6\u27e9)/(\u27e81|3\u27e9\u27e82|3\u27e9\u27e85|6\u27e9\u27e83|2+4|3])\"\"\")]\n\n# generate a random phase space point (in this case over finite fields) and evaluate the basis\nIn [5]: oPs = Particles(6, field=Field(\"finite field\", 2 ** 31 - 1, 1), seed=0)\nIn [6]: lTerms(oPs)\nOut [4]: [1162389822 % 2147483647, 1610387318 % 2147483647, 173910601 % 2147483647, 1377129258 % 2147483647, 2082634606 % 2147483647, ...]\n```\n\nFloating point (real or complex) and $p$-adic phase space points work much in the same way.\n\n### ttH (one-loop)\n\nLoad all $qqttH$ coefficients. These are directly coefficients of the respective Feynman integrals (labeld by external legs and internal mass routings).\n\n```python\nIn [1]: from antares_results.ttH.qqttH.pm import coeffs as qqttH_pm_coeffs\nIn [2]: qqttH_pm_coeffs.keys()\nOut [2]: dict_keys(['tree', 'bub12x00', 'tri12x3x00m', 'box3x12x4xm00m', 'tri13x24xm0m', 'box3x4x12xm0mm', 'box3x1x24xm00m', 'bub13xm0', 'bub34xmm', 'tri124x3xm0m', 'bub1234xmm', 'tri12x3xmm0', 'bub123xm0', 'box4x2x1xm000', 'tri12x34xmmm', 'bub12xmm'])\nIn [3]: from antares_results.ttH.momenta import oPsKCheck # load a phase space point\nIn [4]: {key: val(oPsKCheck) for key, val in qqttH_pm_coeffs.items()}\nOut[4]: \n{'tree': mpc(real='0.4998512132360710056', imag='0.1143902001899784471'),\n 'bub12x00': mpc(real='0.08890670891584541782', imag='3.486530065803925438'),\n 'tri12x3x00m': mpc(real='48.35977263849211738', imag='53.33641975568919236'),\n 'box3x12x4xm00m': mpc(real='-47.46308257461350877', imag='-45.87188967765678171'),\n 'tri13x24xm0m': mpc(real='-12.70147396497987757', imag='2.465657548592817883'),\n 'box3x4x12xm0mm': mpc(real='-0.8736344184540660862', imag='-9.246218431210708744'),\n 'box3x1x24xm00m': mpc(real='25.39062949179914419', imag='-8.492255173857109485'),\n 'bub13xm0': mpc(real='0.07829108262369600946', imag='-0.1842325910625640072'),\n 'bub34xmm': mpc(real='0.1032547846538197367', imag='0.3591837975251150339'),\n 'tri124x3xm0m': mpc(real='5.625101060149315213', imag='1.58915938402978163'),\n 'bub1234xmm': mpc(real='-0.820858500734524571', imag='-0.03028493471636876586'),\n 'tri12x3xmm0': mpc(real='-6.615318666263966363', imag='-8.927541807153011488'),\n 'bub123xm0': mpc(real='0.6853493549121706108', imag='-1.404274244486850426'),\n 'box4x2x1xm000': mpc(real='-90.29617792252767927', imag='6.479713760815963397'),\n 'tri12x34xmmm': mpc(real='-4.354721966504684239', imag='-3.285466744291004104'),\n 'bub12xmm': mpc(real='-0.3362765929597263115', imag='-0.4684054239865742472')}\n```\n\n### jjj (two-loops full-color)\n\nAnalogous to $Vjj$.\n\n### jjjj (one-loop)\n\nAnalogous to $ttH$.\n",
"bugtrack_url": null,
"license": "GNU General Public License v3.0",
"summary": "Spinor Helicity Amplitudes",
"version": "0.0.4",
"project_urls": {
"Documentation": "https://gdelaurentis.github.io/antares-results/",
"Download": "https://github.com/GDeLaurentis/antares-results/archive/v0.0.4.tar.gz",
"Homepage": "https://github.com/GDeLaurentis/antares-results",
"Issues": "https://github.com/GDeLaurentis/antares-results/issues"
},
"split_keywords": [
"spinor helicity",
" scattering amplitudes"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "175d292c4756aa97b72b38cec9fd025a20d946e24af8c453458605729c06e7da",
"md5": "e7e28373507f51550c63c5d4c114ef8b",
"sha256": "93575e82600a9f53c9c619ee912b412cbf62990b6a84b5b9627851220b9a8eab"
},
"downloads": -1,
"filename": "antares_results-0.0.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "e7e28373507f51550c63c5d4c114ef8b",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 37759,
"upload_time": "2025-07-28T09:21:27",
"upload_time_iso_8601": "2025-07-28T09:21:27.956900Z",
"url": "https://files.pythonhosted.org/packages/17/5d/292c4756aa97b72b38cec9fd025a20d946e24af8c453458605729c06e7da/antares_results-0.0.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "fe18c10260ba51440516fa427041888ca531f9bca092360469c5e47aaac64091",
"md5": "839a4199a6c87e1daacdb8e0c7cf4e48",
"sha256": "d9df27f5c0146c19bbf93f0c5c177e515e4d4f3393156bfd671987a27ab7364c"
},
"downloads": -1,
"filename": "antares-results-0.0.4.tar.gz",
"has_sig": false,
"md5_digest": "839a4199a6c87e1daacdb8e0c7cf4e48",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 33749,
"upload_time": "2025-07-28T09:21:28",
"upload_time_iso_8601": "2025-07-28T09:21:28.747199Z",
"url": "https://files.pythonhosted.org/packages/fe/18/c10260ba51440516fa427041888ca531f9bca092360469c5e47aaac64091/antares-results-0.0.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-28 09:21:28",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "GDeLaurentis",
"github_project": "antares-results",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "antares-results"
}