# reports
Models, charts, and tables generated from Antelope catalogs. Heavyweight with pandas, plots, etc.
This package is a collection of useful support tools that (a) are not required in core Antelope and (b) do
or may require heavyweight support packages that would not be desirable in a "slender" install.
The utilities are grouped into several categories, each described briefly below.
The general support level of this code is "late alpha". Most of these tools work, and many of them are
used in production. But they are not CI-ed and may not be well documented.
## charts
Graphical visualizations of LCA results.
Raw data
{
"_id": null,
"home_page": null,
"name": "antelope-reports",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": null,
"keywords": "antelope, waterfall, bar chart, model runner, scenario, lca study",
"author": null,
"author_email": "Brandon Kuczenski <brandon@scope3consulting.com>",
"download_url": "https://files.pythonhosted.org/packages/df/bb/7203a8f9ee2b9edefa38e380e7cfd586560b7d9780fa67438d238f051c7c/antelope_reports-0.2.0.tar.gz",
"platform": null,
"description": "# reports\nModels, charts, and tables generated from Antelope catalogs. Heavyweight with pandas, plots, etc.\n\nThis package is a collection of useful support tools that (a) are not required in core Antelope and (b) do\nor may require heavyweight support packages that would not be desirable in a \"slender\" install.\n\nThe utilities are grouped into several categories, each described briefly below.\n\nThe general support level of this code is \"late alpha\". Most of these tools work, and many of them are \nused in production. But they are not CI-ed and may not be well documented.\n\n## charts\n\nGraphical visualizations of LCA results. \n",
"bugtrack_url": null,
"license": "BSD-3-Clause",
"summary": "Tools for summarizing and visualizing LCA models in Antelope",
"version": "0.2.0",
"project_urls": {
"Repository": "https://github.com/AntelopeLCA/reports"
},
"split_keywords": [
"antelope",
" waterfall",
" bar chart",
" model runner",
" scenario",
" lca study"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "9587999baa77b4a5088cf8f96904e13ac30ecdd25573b76c1d50746857f30ed0",
"md5": "067b01ee3911c0f55105765d538ab304",
"sha256": "c16997683776c320f20f6843540d122c8f6407623385971a37e0a7cc116f7024"
},
"downloads": -1,
"filename": "antelope_reports-0.2.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "067b01ee3911c0f55105765d538ab304",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 142320,
"upload_time": "2024-09-23T06:31:49",
"upload_time_iso_8601": "2024-09-23T06:31:49.336037Z",
"url": "https://files.pythonhosted.org/packages/95/87/999baa77b4a5088cf8f96904e13ac30ecdd25573b76c1d50746857f30ed0/antelope_reports-0.2.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "dfbb7203a8f9ee2b9edefa38e380e7cfd586560b7d9780fa67438d238f051c7c",
"md5": "efcd37f7a07e006c6b0a52b93d68cb42",
"sha256": "201e64f32cd673ef6b71b42b484fcbb31894d41391fd02bee25a1962a56c7e2d"
},
"downloads": -1,
"filename": "antelope_reports-0.2.0.tar.gz",
"has_sig": false,
"md5_digest": "efcd37f7a07e006c6b0a52b93d68cb42",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 117654,
"upload_time": "2024-09-23T06:32:00",
"upload_time_iso_8601": "2024-09-23T06:32:00.961317Z",
"url": "https://files.pythonhosted.org/packages/df/bb/7203a8f9ee2b9edefa38e380e7cfd586560b7d9780fa67438d238f051c7c/antelope_reports-0.2.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-23 06:32:00",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "AntelopeLCA",
"github_project": "reports",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "antelope-reports"
}