# aqua-blue
Lightweight and basic reservoir computing library
## 🌊 What is aqua-blue?
`aqua-blue` is a lightweight `python` library for reservoir computing (specifically [echo state networks](https://en.wikipedia.org/wiki/Echo_state_network)) depending only on `numpy`. `aqua-blue`'s namesake comes from:
- A blue ocean of data, aka a reservoir 💧
- A very fancy cat named Blue 🐾
## 📥 Installation
aqua-blue is on PyPI, and can therefore be installed with pip:
```bash
pip install aqua-blue
```
## 📝 Quickstart
```py
from aqua_blue import TimeSeries, EchoStateNetwork
# generate arbitrary two-dimensional time series
# y_1(t) = cos(t), y_2(t) = sin(t)
# resulting dependent variable has shape (number of timesteps, 2)
t = np.linspace(0, 4.0 * np.pi, 10_000)
y = np.vstack((np.cos(t), np.sin(t))).T
# create time series object to feed into echo state network
time_series = TimeSeries(dependent_variable=y, times=t)
# generate echo state network with a relatively high reservoir dimensionality
esn = EchoStateNetwork(reservoir_dimensionality=100, input_dimensionality=2)
# train esn on our time series
esn.train(time_series)
# predict 1,000 steps into the future
prediction = esn.predict(horizon=1_000)
```
Raw data
{
"_id": null,
"home_page": "https://github.com/Chicago-Club-Management-Company/aqua-blue",
"name": "aqua-blue",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "reservoir computing, prediction, machine learning, forecasting, time series",
"author": "Jacob Jeffries",
"author_email": "jacob.jeffries@chicagoclubteam.org",
"download_url": "https://files.pythonhosted.org/packages/be/2d/cf8521f4f9fac7bae18259553fcc0a5c30cdc69dd0361f5ca50cf7c25f77/aqua_blue-0.0.2.tar.gz",
"platform": null,
"description": "# aqua-blue\nLightweight and basic reservoir computing library\n\n## \ud83c\udf0a What is aqua-blue?\n\n`aqua-blue` is a lightweight `python` library for reservoir computing (specifically [echo state networks](https://en.wikipedia.org/wiki/Echo_state_network)) depending only on `numpy`. `aqua-blue`'s namesake comes from:\n\n- A blue ocean of data, aka a reservoir \ud83d\udca7\n- A very fancy cat named Blue \ud83d\udc3e\n\n## \ud83d\udce5 Installation\n\naqua-blue is on PyPI, and can therefore be installed with pip:\n\n```bash\npip install aqua-blue\n```\n\n## \ud83d\udcdd Quickstart\n\n```py\nfrom aqua_blue import TimeSeries, EchoStateNetwork\n\n# generate arbitrary two-dimensional time series\n# y_1(t) = cos(t), y_2(t) = sin(t)\n# resulting dependent variable has shape (number of timesteps, 2)\nt = np.linspace(0, 4.0 * np.pi, 10_000)\ny = np.vstack((np.cos(t), np.sin(t))).T\n\n# create time series object to feed into echo state network\ntime_series = TimeSeries(dependent_variable=y, times=t)\n\n# generate echo state network with a relatively high reservoir dimensionality\nesn = EchoStateNetwork(reservoir_dimensionality=100, input_dimensionality=2)\n\n# train esn on our time series\nesn.train(time_series)\n\n# predict 1,000 steps into the future\nprediction = esn.predict(horizon=1_000)\n```\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Lightweight and basic reservoir computing library",
"version": "0.0.2",
"project_urls": {
"Homepage": "https://github.com/Chicago-Club-Management-Company/aqua-blue"
},
"split_keywords": [
"reservoir computing",
" prediction",
" machine learning",
" forecasting",
" time series"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "8d29add63b7e0df5a9d518ba14af482a42825cdf2f2a2c9030deb90a8a677a3f",
"md5": "5976a04135985c84758563cd4b4d799d",
"sha256": "fb53547e7a9c58a1cda14d542b21f7677d78b64ce91f2b608a0e369149cb4fa3"
},
"downloads": -1,
"filename": "aqua_blue-0.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "5976a04135985c84758563cd4b4d799d",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 4918,
"upload_time": "2025-01-23T07:05:30",
"upload_time_iso_8601": "2025-01-23T07:05:30.837015Z",
"url": "https://files.pythonhosted.org/packages/8d/29/add63b7e0df5a9d518ba14af482a42825cdf2f2a2c9030deb90a8a677a3f/aqua_blue-0.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "be2dcf8521f4f9fac7bae18259553fcc0a5c30cdc69dd0361f5ca50cf7c25f77",
"md5": "7dd5954ba5ea650c96ef7753e579489b",
"sha256": "6e46469d07b63c78f51ba9740fff7b71b6da6c3503bfd7813a34bfbef6e342b4"
},
"downloads": -1,
"filename": "aqua_blue-0.0.2.tar.gz",
"has_sig": false,
"md5_digest": "7dd5954ba5ea650c96ef7753e579489b",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 4200,
"upload_time": "2025-01-23T07:05:32",
"upload_time_iso_8601": "2025-01-23T07:05:32.810593Z",
"url": "https://files.pythonhosted.org/packages/be/2d/cf8521f4f9fac7bae18259553fcc0a5c30cdc69dd0361f5ca50cf7c25f77/aqua_blue-0.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-23 07:05:32",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Chicago-Club-Management-Company",
"github_project": "aqua-blue",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "numpy",
"specs": [
[
"~=",
"2.2.2"
]
]
},
{
"name": "pytest",
"specs": [
[
"~=",
"8.0.2"
]
]
},
{
"name": "setuptools",
"specs": [
[
"~=",
"58.1.0"
]
]
},
{
"name": "mypy",
"specs": [
[
"~=",
"1.13.0"
]
]
},
{
"name": "ruff",
"specs": [
[
"~=",
"0.9.2"
]
]
}
],
"lcname": "aqua-blue"
}