aqua-blue


Nameaqua-blue JSON
Version 0.0.2 PyPI version JSON
download
home_pagehttps://github.com/Chicago-Club-Management-Company/aqua-blue
SummaryLightweight and basic reservoir computing library
upload_time2025-01-23 07:05:32
maintainerNone
docs_urlNone
authorJacob Jeffries
requires_python>=3.8
licenseMIT
keywords reservoir computing prediction machine learning forecasting time series
VCS
bugtrack_url
requirements numpy pytest setuptools mypy ruff
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # aqua-blue
Lightweight and basic reservoir computing library

## 🌊 What is aqua-blue?

`aqua-blue` is a lightweight `python` library for reservoir computing (specifically [echo state networks](https://en.wikipedia.org/wiki/Echo_state_network)) depending only on `numpy`. `aqua-blue`'s namesake comes from:

- A blue ocean of data, aka a reservoir 💧
- A very fancy cat named Blue 🐾

## 📥 Installation

aqua-blue is on PyPI, and can therefore be installed with pip:

```bash
pip install aqua-blue
```

## 📝 Quickstart

```py
from aqua_blue import TimeSeries, EchoStateNetwork

# generate arbitrary two-dimensional time series
# y_1(t) = cos(t), y_2(t) = sin(t)
# resulting dependent variable has shape (number of timesteps, 2)
t = np.linspace(0, 4.0 * np.pi, 10_000)
y = np.vstack((np.cos(t), np.sin(t))).T

# create time series object to feed into echo state network
time_series = TimeSeries(dependent_variable=y, times=t)

# generate echo state network with a relatively high reservoir dimensionality
esn = EchoStateNetwork(reservoir_dimensionality=100, input_dimensionality=2)

# train esn on our time series
esn.train(time_series)

# predict 1,000 steps into the future
prediction = esn.predict(horizon=1_000)
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Chicago-Club-Management-Company/aqua-blue",
    "name": "aqua-blue",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "reservoir computing, prediction, machine learning, forecasting, time series",
    "author": "Jacob Jeffries",
    "author_email": "jacob.jeffries@chicagoclubteam.org",
    "download_url": "https://files.pythonhosted.org/packages/be/2d/cf8521f4f9fac7bae18259553fcc0a5c30cdc69dd0361f5ca50cf7c25f77/aqua_blue-0.0.2.tar.gz",
    "platform": null,
    "description": "# aqua-blue\nLightweight and basic reservoir computing library\n\n## \ud83c\udf0a What is aqua-blue?\n\n`aqua-blue` is a lightweight `python` library for reservoir computing (specifically [echo state networks](https://en.wikipedia.org/wiki/Echo_state_network)) depending only on `numpy`. `aqua-blue`'s namesake comes from:\n\n- A blue ocean of data, aka a reservoir \ud83d\udca7\n- A very fancy cat named Blue \ud83d\udc3e\n\n## \ud83d\udce5 Installation\n\naqua-blue is on PyPI, and can therefore be installed with pip:\n\n```bash\npip install aqua-blue\n```\n\n## \ud83d\udcdd Quickstart\n\n```py\nfrom aqua_blue import TimeSeries, EchoStateNetwork\n\n# generate arbitrary two-dimensional time series\n# y_1(t) = cos(t), y_2(t) = sin(t)\n# resulting dependent variable has shape (number of timesteps, 2)\nt = np.linspace(0, 4.0 * np.pi, 10_000)\ny = np.vstack((np.cos(t), np.sin(t))).T\n\n# create time series object to feed into echo state network\ntime_series = TimeSeries(dependent_variable=y, times=t)\n\n# generate echo state network with a relatively high reservoir dimensionality\nesn = EchoStateNetwork(reservoir_dimensionality=100, input_dimensionality=2)\n\n# train esn on our time series\nesn.train(time_series)\n\n# predict 1,000 steps into the future\nprediction = esn.predict(horizon=1_000)\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Lightweight and basic reservoir computing library",
    "version": "0.0.2",
    "project_urls": {
        "Homepage": "https://github.com/Chicago-Club-Management-Company/aqua-blue"
    },
    "split_keywords": [
        "reservoir computing",
        " prediction",
        " machine learning",
        " forecasting",
        " time series"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8d29add63b7e0df5a9d518ba14af482a42825cdf2f2a2c9030deb90a8a677a3f",
                "md5": "5976a04135985c84758563cd4b4d799d",
                "sha256": "fb53547e7a9c58a1cda14d542b21f7677d78b64ce91f2b608a0e369149cb4fa3"
            },
            "downloads": -1,
            "filename": "aqua_blue-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "5976a04135985c84758563cd4b4d799d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 4918,
            "upload_time": "2025-01-23T07:05:30",
            "upload_time_iso_8601": "2025-01-23T07:05:30.837015Z",
            "url": "https://files.pythonhosted.org/packages/8d/29/add63b7e0df5a9d518ba14af482a42825cdf2f2a2c9030deb90a8a677a3f/aqua_blue-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "be2dcf8521f4f9fac7bae18259553fcc0a5c30cdc69dd0361f5ca50cf7c25f77",
                "md5": "7dd5954ba5ea650c96ef7753e579489b",
                "sha256": "6e46469d07b63c78f51ba9740fff7b71b6da6c3503bfd7813a34bfbef6e342b4"
            },
            "downloads": -1,
            "filename": "aqua_blue-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "7dd5954ba5ea650c96ef7753e579489b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 4200,
            "upload_time": "2025-01-23T07:05:32",
            "upload_time_iso_8601": "2025-01-23T07:05:32.810593Z",
            "url": "https://files.pythonhosted.org/packages/be/2d/cf8521f4f9fac7bae18259553fcc0a5c30cdc69dd0361f5ca50cf7c25f77/aqua_blue-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-23 07:05:32",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Chicago-Club-Management-Company",
    "github_project": "aqua-blue",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "numpy",
            "specs": [
                [
                    "~=",
                    "2.2.2"
                ]
            ]
        },
        {
            "name": "pytest",
            "specs": [
                [
                    "~=",
                    "8.0.2"
                ]
            ]
        },
        {
            "name": "setuptools",
            "specs": [
                [
                    "~=",
                    "58.1.0"
                ]
            ]
        },
        {
            "name": "mypy",
            "specs": [
                [
                    "~=",
                    "1.13.0"
                ]
            ]
        },
        {
            "name": "ruff",
            "specs": [
                [
                    "~=",
                    "0.9.2"
                ]
            ]
        }
    ],
    "lcname": "aqua-blue"
}
        
Elapsed time: 0.80818s