========
Aqueduct
========
Framework to make youre prediction performance-efficient and scalable.
Key Benefits
============
- Increases the throughput of your machine learning-based service
- Uses shared memory for instantaneous transfer of large amounts of data between processes
- All optimizations in one library
- Supports multiple frameworks
Documentation
=============
- `Videos about aqueduct <docs/video.rst>`_
- Getting started
- - `Fundamentals <docs/fundamentals.rst>`_
- - `Example <docs/example.rst>`_
- `Batching <docs/batching.rst>`_
- `Logging <docs/logging.rst>`_
- `Metrics <docs/metrics.rst>`_
- `F.A.Q. <docs/faq.rst>`_
- Additional features
- - `Sentry support <docs/sentry.rst>`_
Examples
========
- `Aiohttp <examples/aiohttp/>`_
- `Flask <examples/flask/>`_
Installation
=============
Install using ``pip``:
.. code-block:: shell
pip install aqueduct
Moreover, aqueduct has "optional extras"
- ``numpy`` - support types from numpy in shared memory
- ``aiohttp`` - extension for aiohttp support(see more in examples)
.. code-block:: shell
pip install aqueduct[numpy,aiohttp]
Contact Us
==========
Feel free to ask questions in Telegram: `t.me/avito-ml <https://t.me/avito_ml>`_
Raw data
{
"_id": null,
"home_page": "https://github.com/avito-tech/aqueduct",
"name": "aqueduct",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "datascience, learning",
"author": "Data Science SWAT",
"author_email": "UnitDataScienceSwat@avito.ru",
"download_url": "https://files.pythonhosted.org/packages/a0/cd/12e160fdf9df62a912a2a774f5d803ba8c2388e4712267d3bbe23d3ba5a0/aqueduct-1.11.7.tar.gz",
"platform": null,
"description": "========\nAqueduct\n========\n\nFramework to make youre prediction performance-efficient and scalable.\n\nKey Benefits\n============\n\n- Increases the throughput of your machine learning-based service\n- Uses shared memory for instantaneous transfer of large amounts of data between processes\n- All optimizations in one library\n- Supports multiple frameworks\n\nDocumentation\n=============\n\n- `Videos about aqueduct <docs/video.rst>`_\n- Getting started\n- - `Fundamentals <docs/fundamentals.rst>`_\n- - `Example <docs/example.rst>`_\n- `Batching <docs/batching.rst>`_\n- `Logging <docs/logging.rst>`_\n- `Metrics <docs/metrics.rst>`_\n- `F.A.Q. <docs/faq.rst>`_\n- Additional features\n- - `Sentry support <docs/sentry.rst>`_\n\nExamples\n========\n\n- `Aiohttp <examples/aiohttp/>`_\n- `Flask <examples/flask/>`_\n\nInstallation\n=============\n\nInstall using ``pip``:\n\n.. code-block:: shell\n\n pip install aqueduct\n\nMoreover, aqueduct has \"optional extras\"\n\n- ``numpy`` - support types from numpy in shared memory\n- ``aiohttp`` - extension for aiohttp support(see more in examples)\n\n.. code-block:: shell\n\n pip install aqueduct[numpy,aiohttp]\n\n\nContact Us\n==========\n\nFeel free to ask questions in Telegram: `t.me/avito-ml <https://t.me/avito_ml>`_\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Builder for performance-efficient prediction.",
"version": "1.11.7",
"project_urls": {
"Download": "https://github.com/avito-tech/aqueduct/archive/refs/heads/main.zip",
"Homepage": "https://github.com/avito-tech/aqueduct"
},
"split_keywords": [
"datascience",
" learning"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "a0cd12e160fdf9df62a912a2a774f5d803ba8c2388e4712267d3bbe23d3ba5a0",
"md5": "18e27e632e9fb45c93219c2ba79e9c0f",
"sha256": "103a834c56856c4c087a8f19efcd3104e2a9ed9bbbd4a0ff752d60ba13b17792"
},
"downloads": -1,
"filename": "aqueduct-1.11.7.tar.gz",
"has_sig": false,
"md5_digest": "18e27e632e9fb45c93219c2ba79e9c0f",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 41209,
"upload_time": "2024-07-09T10:12:50",
"upload_time_iso_8601": "2024-07-09T10:12:50.741513Z",
"url": "https://files.pythonhosted.org/packages/a0/cd/12e160fdf9df62a912a2a774f5d803ba8c2388e4712267d3bbe23d3ba5a0/aqueduct-1.11.7.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-07-09 10:12:50",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "avito-tech",
"github_project": "aqueduct",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "aqueduct"
}