aqueduct


Nameaqueduct JSON
Version 1.11.7 PyPI version JSON
download
home_pagehttps://github.com/avito-tech/aqueduct
SummaryBuilder for performance-efficient prediction.
upload_time2024-07-09 10:12:50
maintainerNone
docs_urlNone
authorData Science SWAT
requires_python>=3.8
licenseMIT
keywords datascience learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ========
Aqueduct
========

Framework to make youre prediction performance-efficient and scalable.

Key Benefits
============

- Increases the throughput of your machine learning-based service
- Uses shared memory for instantaneous transfer of large amounts of data between processes
- All optimizations in one library
- Supports multiple frameworks

Documentation
=============

- `Videos about aqueduct <docs/video.rst>`_
- Getting started
- - `Fundamentals <docs/fundamentals.rst>`_
- - `Example <docs/example.rst>`_
- `Batching <docs/batching.rst>`_
- `Logging <docs/logging.rst>`_
- `Metrics <docs/metrics.rst>`_
- `F.A.Q. <docs/faq.rst>`_
- Additional features
- - `Sentry support <docs/sentry.rst>`_

Examples
========

- `Aiohttp <examples/aiohttp/>`_
- `Flask <examples/flask/>`_

Installation
=============

Install using ``pip``:

.. code-block:: shell

    pip install aqueduct

Moreover, aqueduct has "optional extras"

- ``numpy`` - support types from numpy in shared memory
- ``aiohttp`` - extension for aiohttp support(see more in examples)

.. code-block:: shell

    pip install aqueduct[numpy,aiohttp]


Contact Us
==========

Feel free to ask questions in Telegram: `t.me/avito-ml <https://t.me/avito_ml>`_

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/avito-tech/aqueduct",
    "name": "aqueduct",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "datascience, learning",
    "author": "Data Science SWAT",
    "author_email": "UnitDataScienceSwat@avito.ru",
    "download_url": "https://files.pythonhosted.org/packages/a0/cd/12e160fdf9df62a912a2a774f5d803ba8c2388e4712267d3bbe23d3ba5a0/aqueduct-1.11.7.tar.gz",
    "platform": null,
    "description": "========\nAqueduct\n========\n\nFramework to make youre prediction performance-efficient and scalable.\n\nKey Benefits\n============\n\n- Increases the throughput of your machine learning-based service\n- Uses shared memory for instantaneous transfer of large amounts of data between processes\n- All optimizations in one library\n- Supports multiple frameworks\n\nDocumentation\n=============\n\n- `Videos about aqueduct <docs/video.rst>`_\n- Getting started\n- - `Fundamentals <docs/fundamentals.rst>`_\n- - `Example <docs/example.rst>`_\n- `Batching <docs/batching.rst>`_\n- `Logging <docs/logging.rst>`_\n- `Metrics <docs/metrics.rst>`_\n- `F.A.Q. <docs/faq.rst>`_\n- Additional features\n- - `Sentry support <docs/sentry.rst>`_\n\nExamples\n========\n\n- `Aiohttp <examples/aiohttp/>`_\n- `Flask <examples/flask/>`_\n\nInstallation\n=============\n\nInstall using ``pip``:\n\n.. code-block:: shell\n\n    pip install aqueduct\n\nMoreover, aqueduct has \"optional extras\"\n\n- ``numpy`` - support types from numpy in shared memory\n- ``aiohttp`` - extension for aiohttp support(see more in examples)\n\n.. code-block:: shell\n\n    pip install aqueduct[numpy,aiohttp]\n\n\nContact Us\n==========\n\nFeel free to ask questions in Telegram: `t.me/avito-ml <https://t.me/avito_ml>`_\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Builder for performance-efficient prediction.",
    "version": "1.11.7",
    "project_urls": {
        "Download": "https://github.com/avito-tech/aqueduct/archive/refs/heads/main.zip",
        "Homepage": "https://github.com/avito-tech/aqueduct"
    },
    "split_keywords": [
        "datascience",
        " learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a0cd12e160fdf9df62a912a2a774f5d803ba8c2388e4712267d3bbe23d3ba5a0",
                "md5": "18e27e632e9fb45c93219c2ba79e9c0f",
                "sha256": "103a834c56856c4c087a8f19efcd3104e2a9ed9bbbd4a0ff752d60ba13b17792"
            },
            "downloads": -1,
            "filename": "aqueduct-1.11.7.tar.gz",
            "has_sig": false,
            "md5_digest": "18e27e632e9fb45c93219c2ba79e9c0f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 41209,
            "upload_time": "2024-07-09T10:12:50",
            "upload_time_iso_8601": "2024-07-09T10:12:50.741513Z",
            "url": "https://files.pythonhosted.org/packages/a0/cd/12e160fdf9df62a912a2a774f5d803ba8c2388e4712267d3bbe23d3ba5a0/aqueduct-1.11.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-07-09 10:12:50",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "avito-tech",
    "github_project": "aqueduct",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "aqueduct"
}
        
Elapsed time: 1.73944s