# arachnea
arachnea is a Python library that allows you to perform efficient array operations using a fluent API approach inspired by the agility and efficiency of spiders.
## Features
- **Map**: Transform each element of an array using a provided function.
- **Filter**: Filter elements of an array based on a provided condition.
- **Reduce**: Reduce an array to a single value based on a provided accumulator and transformation function.
- **Find**: Find the first element in the array that meets the given condition.
- **Remove**: Remove the first element in the array that meets the given condition.
- **ForEach**: Execute a provided function once for each array element.
## Installation
You can install arachnea via pip:
```bash
pip install arachnea
```
## Usage
### Basic Usage
```python
from arachnea import arachnea
numbers = [1, 2, 3, 4, 5]
arachnea(numbers).for_each(lambda num: print(num * 2)) # Example of using forEach
```
### API Examples
#### Mapping and Reducing
```python
numbers = [1, 2, 3, 4, 5]
sum_of_squares = (
arachnea(numbers)
.map(lambda num: num * num)
.reduce(lambda acc, num: acc + num, 0)
)
print(sum_of_squares) # Output: 55
```
#### Filtering and Collecting
```python
numbers = [1, 2, 3, 4, 5]
odd_numbers = (
arachnea(numbers)
.filter(lambda num: num % 2 != 0)
.collect()
)
print(odd_numbers) # Output: [1, 3, 5]
```
#### Removing Elements
```python
numbers = [1, 2, 3, 4, 5]
remove_4 = (
arachnea(numbers)
.map(lambda num: num * num)
.remove(4)
.collect()
)
print(remove_4) # Output: [1, 9, 16, 25]
```
#### Finding Elements
```python
numbers = [1, 2, 3, 4, 5]
greater_than_twenty_four = (
arachnea(numbers)
.map(lambda num: num * num)
.find(lambda num: num > 24)
)
print(greater_than_twenty_four) # Output: 25
```
#### Chaining Operations
```python
numbers = [1, 2, 3, 4, 5]
result = (
arachnea(numbers)
.filter(lambda num: num > 2)
.map(lambda num: num * 3)
.reduce(lambda acc, num: acc + num, 0)
)
print(result) # Output: 39
```
## API
### `map(transformer: (element: T) => K) -> Stream[K]`
Transforms each element of the array using the provided transformer function.
### `filter(condition: (element: T) => bool) -> Stream[T]`
Filters elements of the array based on the provided boolean condition function.
### `reduce(reducer: (accumulator: K, element: T) => K, initial_value: K) -> K`
Reduces the array to a single value using the provided reducer function and initial value.
### `remove(condition: (element: T) => bool | T) -> Stream[T]`
Removes the first element in the array that meets the given condition or is equal to the given parameter.
### `find(condition: (element: T) => bool | T) -> T`
Finds the first element in the array that meets the given condition or is equal to the given parameter.
### `for_each(action: (element: T) => None) -> None`
Executes a provided function once for each array element.
### `collect() -> List[T]`
Collects the elements after applying all transformations and filters, returning them as a list.
## Todo
- Combine successive filter operations into a single operation.
- Document `actionsLoop` for custom terminating operation injection.
- Improve the performance of atomic operations.
- Add sorting, flattening functionality.
- Enhance performance optimizations.
- Implement error handling for edge cases.
## Contributing
Contributions are welcome! Please fork the repository and submit a pull request.
Raw data
{
"_id": null,
"home_page": "https://github.com/yourusername/arachnea",
"name": "arachnea",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "array operations, data processing, lightweight, Python library",
"author": "Suhan",
"author_email": "suhan01.bangera@gamil.com",
"download_url": "https://files.pythonhosted.org/packages/96/ca/63ebf04386a653d1a9e76bf092d0d01255613f8b24e1d921c0e6303873be/arachnea-0.0.5.tar.gz",
"platform": null,
"description": "# arachnea\n\narachnea is a Python library that allows you to perform efficient array operations using a fluent API approach inspired by the agility and efficiency of spiders.\n\n## Features\n\n- **Map**: Transform each element of an array using a provided function.\n- **Filter**: Filter elements of an array based on a provided condition.\n- **Reduce**: Reduce an array to a single value based on a provided accumulator and transformation function.\n- **Find**: Find the first element in the array that meets the given condition.\n- **Remove**: Remove the first element in the array that meets the given condition.\n- **ForEach**: Execute a provided function once for each array element.\n\n## Installation\n\nYou can install arachnea via pip:\n\n```bash\npip install arachnea\n```\n\n## Usage\n\n### Basic Usage\n\n```python\nfrom arachnea import arachnea\n\nnumbers = [1, 2, 3, 4, 5]\n\narachnea(numbers).for_each(lambda num: print(num * 2)) # Example of using forEach\n```\n\n### API Examples\n\n#### Mapping and Reducing\n\n```python\nnumbers = [1, 2, 3, 4, 5]\n\nsum_of_squares = (\n arachnea(numbers)\n .map(lambda num: num * num)\n .reduce(lambda acc, num: acc + num, 0)\n)\n\nprint(sum_of_squares) # Output: 55\n```\n\n#### Filtering and Collecting\n\n```python\nnumbers = [1, 2, 3, 4, 5]\n\nodd_numbers = (\n arachnea(numbers)\n .filter(lambda num: num % 2 != 0)\n .collect()\n)\n\nprint(odd_numbers) # Output: [1, 3, 5]\n```\n\n#### Removing Elements\n\n```python\nnumbers = [1, 2, 3, 4, 5]\n\nremove_4 = (\n arachnea(numbers)\n .map(lambda num: num * num)\n .remove(4)\n .collect()\n)\n\nprint(remove_4) # Output: [1, 9, 16, 25]\n```\n\n#### Finding Elements\n\n```python\nnumbers = [1, 2, 3, 4, 5]\n\ngreater_than_twenty_four = (\n arachnea(numbers)\n .map(lambda num: num * num)\n .find(lambda num: num > 24)\n)\n\nprint(greater_than_twenty_four) # Output: 25\n```\n\n#### Chaining Operations\n\n```python\nnumbers = [1, 2, 3, 4, 5]\n\nresult = (\n arachnea(numbers)\n .filter(lambda num: num > 2)\n .map(lambda num: num * 3)\n .reduce(lambda acc, num: acc + num, 0)\n)\n\nprint(result) # Output: 39\n```\n\n## API\n\n### `map(transformer: (element: T) => K) -> Stream[K]`\n\nTransforms each element of the array using the provided transformer function.\n\n### `filter(condition: (element: T) => bool) -> Stream[T]`\n\nFilters elements of the array based on the provided boolean condition function.\n\n### `reduce(reducer: (accumulator: K, element: T) => K, initial_value: K) -> K`\n\nReduces the array to a single value using the provided reducer function and initial value.\n\n### `remove(condition: (element: T) => bool | T) -> Stream[T]`\n\nRemoves the first element in the array that meets the given condition or is equal to the given parameter.\n\n### `find(condition: (element: T) => bool | T) -> T`\n\nFinds the first element in the array that meets the given condition or is equal to the given parameter.\n\n### `for_each(action: (element: T) => None) -> None`\n\nExecutes a provided function once for each array element.\n\n### `collect() -> List[T]`\n\nCollects the elements after applying all transformations and filters, returning them as a list.\n\n## Todo\n\n- Combine successive filter operations into a single operation.\n- Document `actionsLoop` for custom terminating operation injection.\n- Improve the performance of atomic operations.\n- Add sorting, flattening functionality.\n- Enhance performance optimizations.\n- Implement error handling for edge cases.\n\n## Contributing\n\nContributions are welcome! Please fork the repository and submit a pull request.\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A Python library for efficient array operations using a fluent API.",
"version": "0.0.5",
"project_urls": {
"Homepage": "https://github.com/yourusername/arachnea",
"Source": "https://github.com/Spyder01/arachnea-python"
},
"split_keywords": [
"array operations",
" data processing",
" lightweight",
" python library"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "0fddf4bf8c3df5d7ff267fb6e58585d2cc58fc3cdde8b441f6bb9ce9c04f953b",
"md5": "f51e694c18fcd0c82d6bffd3e06cac2d",
"sha256": "b7191613bbd108f74d0658f870bebdd8ff737289cd1af9fcbfac5756598893fe"
},
"downloads": -1,
"filename": "arachnea-0.0.5-py3-none-any.whl",
"has_sig": false,
"md5_digest": "f51e694c18fcd0c82d6bffd3e06cac2d",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 5433,
"upload_time": "2024-08-12T09:42:11",
"upload_time_iso_8601": "2024-08-12T09:42:11.278588Z",
"url": "https://files.pythonhosted.org/packages/0f/dd/f4bf8c3df5d7ff267fb6e58585d2cc58fc3cdde8b441f6bb9ce9c04f953b/arachnea-0.0.5-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "96ca63ebf04386a653d1a9e76bf092d0d01255613f8b24e1d921c0e6303873be",
"md5": "b10d709b2f3a01a6807e7f808144f5f2",
"sha256": "d27f23c713c810e458eaa919a4066bab475176b6ecf2b035fac3c59a74c8a655"
},
"downloads": -1,
"filename": "arachnea-0.0.5.tar.gz",
"has_sig": false,
"md5_digest": "b10d709b2f3a01a6807e7f808144f5f2",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 5208,
"upload_time": "2024-08-12T09:42:12",
"upload_time_iso_8601": "2024-08-12T09:42:12.544431Z",
"url": "https://files.pythonhosted.org/packages/96/ca/63ebf04386a653d1a9e76bf092d0d01255613f8b24e1d921c0e6303873be/arachnea-0.0.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-08-12 09:42:12",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "yourusername",
"github_project": "arachnea",
"github_not_found": true,
"lcname": "arachnea"
}