arctic3d


Namearctic3d JSON
Version 0.4.1 PyPI version JSON
download
home_pageNone
SummaryAutomatic Retrieval and ClusTering of Interfaces in Complexes from 3D structural information
upload_time2024-04-22 12:14:07
maintainerNone
docs_urlNone
authorBonvinLab
requires_python<3.12,>=3.9
licenseApache-2.0
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ARCTIC-3D

[![ci](https://github.com/haddocking/arctic3d/actions/workflows/ci.yml/badge.svg)](https://github.com/haddocking/arctic3d/actions/workflows/ci.yml)
[![Codacy Badge](https://app.codacy.com/project/badge/Coverage/dc788367452c47928e30f2f1f481d7e4)](https://www.codacy.com/gh/haddocking/arctic3d/dashboard?utm_source=github.com&utm_medium=referral&utm_content=haddocking/arctic3d&utm_campaign=Badge_Coverage)
[![Codacy Badge](https://app.codacy.com/project/badge/Grade/dc788367452c47928e30f2f1f481d7e4)](https://www.codacy.com/gh/haddocking/arctic3d/dashboard?utm_source=github.com&utm_medium=referral&utm_content=haddocking/arctic3d&utm_campaign=Badge_Grade)
[![SQAaaS badge shields.io](https://img.shields.io/badge/sqaaas%20software-bronze-e6ae77)](https://api.eu.badgr.io/public/assertions/oAuS52pQTWaC90qMk97hlA "SQAaaS bronze badge achieved")
[![fair-software.eu](https://img.shields.io/badge/fair--software.eu-%E2%97%8F%20%20%E2%97%8F%20%20%E2%97%8B%20%20%E2%97%8B%20%20%E2%97%8F-orange)](https://fair-software.eu)

[![SQAaaS badge](https://github.com/EOSC-synergy/SQAaaS/raw/master/badges/badges_150x116/badge_software_bronze.png)](https://api.eu.badgr.io/public/assertions/oAuS52pQTWaC90qMk97hlA "SQAaaS bronze badge achieved")

<img src="https://raw.githubusercontent.com/haddocking/arctic3d/main/docs/imgs/arctic3d.png" width="450">

**A**utomatic **R**etrieval and **C**lus**T**ering of **I**nterfaces in Complexes from **3D** structural information

## WEB SERVER

ARCTIC-3D is available at this webserver https://wenmr.science.uu.nl/arctic3d/

## ARCTIC-3D: all you want to know about protein-specific interfaces

ARCTIC-3D is a software for data-mining and clustering of protein interface information. It allows you to retrieve all the existing interface information for your desired protein from the PDBE graph database (https://www.ebi.ac.uk/pdbe/pdbe-kb/), grouping similar interfaces in interacting surfaces.

The software first checks your input (a uniprot ID, a FASTA file, or a PDB file), and then retrieves the existing interaction data from the [graph API](https://www.ebi.ac.uk/pdbe/graph-api/pdbe_doc/). Such interfaces are projected on a selected PDB structure and their dissimilarity is calculated, thus allowing for the application of a hierarchical clustering algorithm.

In output you will see how your favourite protein can display different binding surfaces, each one characterised by few residues that are always present (_hotspots_) and other amino acids which are at the interface only from time to time.

## Developing

Check [CONTRIBUTING.md](CONTRIBUTING.md) for more information.

## Installation

### With `conda`

Clone the repository on your computer and navigate to it

```bash
git clone git@github.com:haddocking/arctic3d.git
cd arctic3d
```

Here you can create the arctic3d environment:

```bash
conda create -n arctic3d python=3.10
conda activate arctic3d
pip install .
arctic3d -h
```

## To run BLAST locally

```bash
bash install_blast_deps.sh
```

And put `blastp` in your `$PATH` by adding the following line to your `.bashrc` or `.bash_profile` file:

```bash
export PATH="PATH_TO_YOUR_ARCTIC3D_INSTALLATION/src/ncbi-blast-2.15.0+/bin:$PATH"
```

## Example usage

Please refer to the [examples](docs/examples.md) documentation page.

## Detailed documentation

In order to generate a detailed html documentation please execute these commands

```text
pip install myst_parser
pip install chardet
conda install sphinx
sphinx-build -E docs ./arctic3d-docs
```

Then you can open the file `arctic3d-docs/index.html`, which contains all the necessary documentation.

## Citing us

If you used ARCTIC-3D in your work please cite the following publication:

**Marco Giulini, Rodrigo V. Honorato, Jesús L. Rivera, and Alexandre MJJ Bonvin**: "ARCTIC-3D: automatic retrieval and clustering of interfaces in complexes from 3D structural information." Communications Biology 7, no. 1 (2024): 49. (www.nature.com/articles/s42003-023-05718-w)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "arctic3d",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.12,>=3.9",
    "maintainer_email": null,
    "keywords": null,
    "author": "BonvinLab",
    "author_email": "bonvinlab.support@uu.nl",
    "download_url": "https://files.pythonhosted.org/packages/03/a6/55dc0d8a58bddf165ebe9a9f8766e7811f5033cbedb8915ebd7a3572287b/arctic3d-0.4.1.tar.gz",
    "platform": null,
    "description": "# ARCTIC-3D\n\n[![ci](https://github.com/haddocking/arctic3d/actions/workflows/ci.yml/badge.svg)](https://github.com/haddocking/arctic3d/actions/workflows/ci.yml)\n[![Codacy Badge](https://app.codacy.com/project/badge/Coverage/dc788367452c47928e30f2f1f481d7e4)](https://www.codacy.com/gh/haddocking/arctic3d/dashboard?utm_source=github.com&utm_medium=referral&utm_content=haddocking/arctic3d&utm_campaign=Badge_Coverage)\n[![Codacy Badge](https://app.codacy.com/project/badge/Grade/dc788367452c47928e30f2f1f481d7e4)](https://www.codacy.com/gh/haddocking/arctic3d/dashboard?utm_source=github.com&utm_medium=referral&utm_content=haddocking/arctic3d&utm_campaign=Badge_Grade)\n[![SQAaaS badge shields.io](https://img.shields.io/badge/sqaaas%20software-bronze-e6ae77)](https://api.eu.badgr.io/public/assertions/oAuS52pQTWaC90qMk97hlA \"SQAaaS bronze badge achieved\")\n[![fair-software.eu](https://img.shields.io/badge/fair--software.eu-%E2%97%8F%20%20%E2%97%8F%20%20%E2%97%8B%20%20%E2%97%8B%20%20%E2%97%8F-orange)](https://fair-software.eu)\n\n[![SQAaaS badge](https://github.com/EOSC-synergy/SQAaaS/raw/master/badges/badges_150x116/badge_software_bronze.png)](https://api.eu.badgr.io/public/assertions/oAuS52pQTWaC90qMk97hlA \"SQAaaS bronze badge achieved\")\n\n<img src=\"https://raw.githubusercontent.com/haddocking/arctic3d/main/docs/imgs/arctic3d.png\" width=\"450\">\n\n**A**utomatic **R**etrieval and **C**lus**T**ering of **I**nterfaces in Complexes from **3D** structural information\n\n## WEB SERVER\n\nARCTIC-3D is available at this webserver https://wenmr.science.uu.nl/arctic3d/\n\n## ARCTIC-3D: all you want to know about protein-specific interfaces\n\nARCTIC-3D is a software for data-mining and clustering of protein interface information. It allows you to retrieve all the existing interface information for your desired protein from the PDBE graph database (https://www.ebi.ac.uk/pdbe/pdbe-kb/), grouping similar interfaces in interacting surfaces.\n\nThe software first checks your input (a uniprot ID, a FASTA file, or a PDB file), and then retrieves the existing interaction data from the [graph API](https://www.ebi.ac.uk/pdbe/graph-api/pdbe_doc/). Such interfaces are projected on a selected PDB structure and their dissimilarity is calculated, thus allowing for the application of a hierarchical clustering algorithm.\n\nIn output you will see how your favourite protein can display different binding surfaces, each one characterised by few residues that are always present (_hotspots_) and other amino acids which are at the interface only from time to time.\n\n## Developing\n\nCheck [CONTRIBUTING.md](CONTRIBUTING.md) for more information.\n\n## Installation\n\n### With `conda`\n\nClone the repository on your computer and navigate to it\n\n```bash\ngit clone git@github.com:haddocking/arctic3d.git\ncd arctic3d\n```\n\nHere you can create the arctic3d environment:\n\n```bash\nconda create -n arctic3d python=3.10\nconda activate arctic3d\npip install .\narctic3d -h\n```\n\n## To run BLAST locally\n\n```bash\nbash install_blast_deps.sh\n```\n\nAnd put `blastp` in your `$PATH` by adding the following line to your `.bashrc` or `.bash_profile` file:\n\n```bash\nexport PATH=\"PATH_TO_YOUR_ARCTIC3D_INSTALLATION/src/ncbi-blast-2.15.0+/bin:$PATH\"\n```\n\n## Example usage\n\nPlease refer to the [examples](docs/examples.md) documentation page.\n\n## Detailed documentation\n\nIn order to generate a detailed html documentation please execute these commands\n\n```text\npip install myst_parser\npip install chardet\nconda install sphinx\nsphinx-build -E docs ./arctic3d-docs\n```\n\nThen you can open the file `arctic3d-docs/index.html`, which contains all the necessary documentation.\n\n## Citing us\n\nIf you used ARCTIC-3D in your work please cite the following publication:\n\n**Marco Giulini, Rodrigo V. Honorato, Jes\u00fas L. Rivera, and Alexandre MJJ Bonvin**: \"ARCTIC-3D: automatic retrieval and clustering of interfaces in complexes from 3D structural information.\" Communications Biology 7, no. 1 (2024): 49. (www.nature.com/articles/s42003-023-05718-w)\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "Automatic Retrieval and ClusTering of Interfaces in Complexes from 3D structural information",
    "version": "0.4.1",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4c93960231470c2023387b69cc682dbf5f2f3455dd673213d48058a91e0357ae",
                "md5": "fd4c2d66d9f0721ab675ea33f136ac86",
                "sha256": "500e8dabc14beeff2de4b02c205d8fac84539f46cdc1bd9986ba495f2f016b35"
            },
            "downloads": -1,
            "filename": "arctic3d-0.4.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "fd4c2d66d9f0721ab675ea33f136ac86",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.12,>=3.9",
            "size": 43820,
            "upload_time": "2024-04-22T12:14:05",
            "upload_time_iso_8601": "2024-04-22T12:14:05.922119Z",
            "url": "https://files.pythonhosted.org/packages/4c/93/960231470c2023387b69cc682dbf5f2f3455dd673213d48058a91e0357ae/arctic3d-0.4.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "03a655dc0d8a58bddf165ebe9a9f8766e7811f5033cbedb8915ebd7a3572287b",
                "md5": "ea3877104220f6605576ae0bd035956a",
                "sha256": "eac2e68254551a6856fcc9150c8b755f7d1adcbfe49fbcc5ffb3f8dbfce5b15a"
            },
            "downloads": -1,
            "filename": "arctic3d-0.4.1.tar.gz",
            "has_sig": false,
            "md5_digest": "ea3877104220f6605576ae0bd035956a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.12,>=3.9",
            "size": 37469,
            "upload_time": "2024-04-22T12:14:07",
            "upload_time_iso_8601": "2024-04-22T12:14:07.513824Z",
            "url": "https://files.pythonhosted.org/packages/03/a6/55dc0d8a58bddf165ebe9a9f8766e7811f5033cbedb8915ebd7a3572287b/arctic3d-0.4.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-22 12:14:07",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "arctic3d"
}
        
Elapsed time: 0.37553s