arekit


Namearekit JSON
Version 0.25.1 PyPI version JSON
download
home_pagehttps://github.com/nicolay-r/AREkit
SummaryDocument level Attitude and Relation Extraction toolkit (AREkit) for sampling and prompting mass-media news into datasets for ML-model training
upload_time2024-12-07 11:52:01
maintainerNone
docs_urlNone
authorNicolay Rusnachenko
requires_python>=3.6
licenseMIT License
keywords natural language processing relation extraction sentiment analysis
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # AREkit 0.25.1

![](https://img.shields.io/badge/Python-3.9+-brightgreen.svg)

<p align="center">
    <img src="logo.png"/>
</p>

**AREkit** (Attitude and Relation Extraction Toolkit) --
is a python toolkit, devoted to document level Attitude and Relation Extraction between text objects from mass-media news. 

## Description


This toolkit aims at memory-effective data processing in [Relation Extraction (RE)](https://nlpprogress.com/english/relationship_extraction.html) related tasks.

<p align="center">
    <img src="docs/arekit-pipeline-concept.png"/>
</p>

> Figure: AREkit pipelines design. More on 
> **[ARElight: Context Sampling of Large Texts for Deep Learning Relation Extraction](https://link.springer.com/chapter/10.1007/978-3-031-56069-9_23)** paper

In particular, this framework serves the following features: 
* ➿ [pipelines](https://github.com/nicolay-r/AREkit/wiki/Pipelines:-Text-Opinion-Annotation) and iterators for handling large-scale collections serialization without out-of-memory issues.
* 🔗 EL (entity-linking) API support for objects, 
* ➰ avoidance of cyclic connections,
* :straight_ruler: distance consideration between relation participants (in `terms` or `sentences`),
* 📑 relations annotations and filtering rules,
* *️⃣ entities formatting or masking, and more.

The core functionality includes: 
* API for document presentation with EL (Entity Linking, i.e. Object Synonymy) support 
for sentence level relations preparation (dubbed as contexts);
* API for contexts extraction;
* Relations transferring from sentence-level onto document-level, and more.

## Installation 

```bash
pip install git+https://github.com/nicolay-r/AREkit.git@0.25.1-rc
```

## Usage

Please follow the **[tutorial section on project Wiki](https://github.com/nicolay-r/AREkit/wiki/Tutorials)** for mode details.

## How to cite
A great research is also accompanied by the faithful reference. 
if you use or extend our work, please cite as follows:

```bibtex
@inproceedings{rusnachenko2024arelight,
  title={ARElight: Context Sampling of Large Texts for Deep Learning Relation Extraction},
  author={Rusnachenko, Nicolay and Liang, Huizhi and Kolomeets, Maxim and Shi, Lei},
  booktitle={European Conference on Information Retrieval},
  year={2024},
  organization={Springer}
}
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/nicolay-r/AREkit",
    "name": "arekit",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "natural language processing, relation extraction, sentiment analysis",
    "author": "Nicolay Rusnachenko",
    "author_email": "rusnicolay@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/5d/82/265c0545511705d686216d6c3d93a8eca5a16640ebe71315719d4faf8df0/arekit-0.25.1.tar.gz",
    "platform": null,
    "description": "# AREkit 0.25.1\n\n![](https://img.shields.io/badge/Python-3.9+-brightgreen.svg)\n\n<p align=\"center\">\n    <img src=\"logo.png\"/>\n</p>\n\n**AREkit** (Attitude and Relation Extraction Toolkit) --\nis a python toolkit, devoted to document level Attitude and Relation Extraction between text objects from mass-media news. \n\n## Description\n\n\nThis toolkit aims at memory-effective data processing in [Relation Extraction (RE)](https://nlpprogress.com/english/relationship_extraction.html) related tasks.\n\n<p align=\"center\">\n    <img src=\"docs/arekit-pipeline-concept.png\"/>\n</p>\n\n> Figure: AREkit pipelines design. More on \n> **[ARElight: Context Sampling of Large Texts for Deep Learning Relation Extraction](https://link.springer.com/chapter/10.1007/978-3-031-56069-9_23)** paper\n\nIn particular, this framework serves the following features: \n* \u27bf [pipelines](https://github.com/nicolay-r/AREkit/wiki/Pipelines:-Text-Opinion-Annotation) and iterators for handling large-scale collections serialization without out-of-memory issues.\n* \ud83d\udd17 EL (entity-linking) API support for objects, \n* \u27b0 avoidance of cyclic connections,\n* :straight_ruler: distance consideration between relation participants (in `terms` or `sentences`),\n* \ud83d\udcd1 relations annotations and filtering rules,\n* *\ufe0f\u20e3 entities formatting or masking, and more.\n\nThe core functionality includes: \n* API for document presentation with EL (Entity Linking, i.e. Object Synonymy) support \nfor sentence level relations preparation (dubbed as contexts);\n* API for contexts extraction;\n* Relations transferring from sentence-level onto document-level, and more.\n\n## Installation \n\n```bash\npip install git+https://github.com/nicolay-r/AREkit.git@0.25.1-rc\n```\n\n## Usage\n\nPlease follow the **[tutorial section on project Wiki](https://github.com/nicolay-r/AREkit/wiki/Tutorials)** for mode details.\n\n## How to cite\nA great research is also accompanied by the faithful reference. \nif you use or extend our work, please cite as follows:\n\n```bibtex\n@inproceedings{rusnachenko2024arelight,\n  title={ARElight: Context Sampling of Large Texts for Deep Learning Relation Extraction},\n  author={Rusnachenko, Nicolay and Liang, Huizhi and Kolomeets, Maxim and Shi, Lei},\n  booktitle={European Conference on Information Retrieval},\n  year={2024},\n  organization={Springer}\n}\n```\n",
    "bugtrack_url": null,
    "license": "MIT License",
    "summary": "Document level Attitude and Relation Extraction toolkit (AREkit) for sampling and prompting mass-media news into datasets for ML-model training",
    "version": "0.25.1",
    "project_urls": {
        "Homepage": "https://github.com/nicolay-r/AREkit"
    },
    "split_keywords": [
        "natural language processing",
        " relation extraction",
        " sentiment analysis"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "591cf707518c00e173635416c13e3ffb22a4b10acbf140345458c6c783636392",
                "md5": "0530bedd07305baaa703a33348a01e45",
                "sha256": "f6b336c1c00392f040a3dfbf98b32815c824ab3e6780df816fac7c2da5c168a8"
            },
            "downloads": -1,
            "filename": "arekit-0.25.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "0530bedd07305baaa703a33348a01e45",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 136186,
            "upload_time": "2024-12-07T11:51:58",
            "upload_time_iso_8601": "2024-12-07T11:51:58.343180Z",
            "url": "https://files.pythonhosted.org/packages/59/1c/f707518c00e173635416c13e3ffb22a4b10acbf140345458c6c783636392/arekit-0.25.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5d82265c0545511705d686216d6c3d93a8eca5a16640ebe71315719d4faf8df0",
                "md5": "59cf04a163a61aa37b4af5e56453628c",
                "sha256": "b3f566191ebfd26a5bb28717d965c07c9d2f699c7a3bc399fb1cb7b6c1566049"
            },
            "downloads": -1,
            "filename": "arekit-0.25.1.tar.gz",
            "has_sig": false,
            "md5_digest": "59cf04a163a61aa37b4af5e56453628c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 97126,
            "upload_time": "2024-12-07T11:52:01",
            "upload_time_iso_8601": "2024-12-07T11:52:01.056293Z",
            "url": "https://files.pythonhosted.org/packages/5d/82/265c0545511705d686216d6c3d93a8eca5a16640ebe71315719d4faf8df0/arekit-0.25.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-07 11:52:01",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "nicolay-r",
    "github_project": "AREkit",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "arekit"
}
        
Elapsed time: 0.38069s