arize-phoenix-evals


Namearize-phoenix-evals JSON
Version 0.17.4 PyPI version JSON
download
home_pageNone
SummaryLLM Evaluations
upload_time2024-11-12 20:09:59
maintainerNone
docs_urlNone
authorNone
requires_python<3.14,>=3.8
licenseElastic-2.0
keywords explainability monitoring observability
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # arize-phoenix-evals

Phoenix provides tooling to evaluate LLM applications, including tools to determine the relevance or irrelevance of documents retrieved by retrieval-augmented generation (RAG) application, whether or not the response is toxic, and much more.

Phoenix's approach to LLM evals is notable for the following reasons:

-   Includes pre-tested templates and convenience functions for a set of common Eval “tasks”
-   Data science rigor applied to the testing of model and template combinations
-   Designed to run as fast as possible on batches of data
-   Includes benchmark datasets and tests for each eval function

## Installation

Install the arize-phoenix sub-package via `pip`

```shell
pip install arize-phoenix-evals
```

Note you will also have to install the LLM vendor SDK you would like to use with LLM Evals. For example, to use OpenAI's GPT-4, you will need to install the OpenAI Python SDK:

```shell
pip install 'openai>=1.0.0'
```

## Usage

Here is an example of running the RAG relevance eval on a dataset of Wikipedia questions and answers:

```python
import os
from phoenix.evals import (
    RAG_RELEVANCY_PROMPT_TEMPLATE,
    RAG_RELEVANCY_PROMPT_RAILS_MAP,
    OpenAIModel,
    download_benchmark_dataset,
    llm_classify,
)
from sklearn.metrics import precision_recall_fscore_support, confusion_matrix, ConfusionMatrixDisplay

os.environ["OPENAI_API_KEY"] = "<your-openai-key>"

# Download the benchmark golden dataset
df = download_benchmark_dataset(
    task="binary-relevance-classification", dataset_name="wiki_qa-train"
)
# Sample and re-name the columns to match the template
df = df.sample(100)
df = df.rename(
    columns={
        "query_text": "input",
        "document_text": "reference",
    },
)
model = OpenAIModel(
    model="gpt-4",
    temperature=0.0,
)


rails =list(RAG_RELEVANCY_PROMPT_RAILS_MAP.values())
df[["eval_relevance"]] = llm_classify(df, model, RAG_RELEVANCY_PROMPT_TEMPLATE, rails)
#Golden dataset has True/False map to -> "irrelevant" / "relevant"
#we can then scikit compare to output of template - same format
y_true = df["relevant"].map({True: "relevant", False: "irrelevant"})
y_pred = df["eval_relevance"]

# Compute Per-Class Precision, Recall, F1 Score, Support
precision, recall, f1, support = precision_recall_fscore_support(y_true, y_pred)
```

To learn more about LLM Evals, see the [LLM Evals documentation](https://docs.arize.com/phoenix/concepts/llm-evals/).

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "arize-phoenix-evals",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.14,>=3.8",
    "maintainer_email": null,
    "keywords": "Explainability, Monitoring, Observability",
    "author": null,
    "author_email": "Arize AI <phoenix-devs@arize.com>",
    "download_url": "https://files.pythonhosted.org/packages/33/e3/8693a1fc84c1520c3fc5e56a75cc7642d7e04e4cc5716285618433d1d77c/arize_phoenix_evals-0.17.4.tar.gz",
    "platform": null,
    "description": "# arize-phoenix-evals\n\nPhoenix provides tooling to evaluate LLM applications, including tools to determine the relevance or irrelevance of documents retrieved by retrieval-augmented generation (RAG) application, whether or not the response is toxic, and much more.\n\nPhoenix's approach to LLM evals is notable for the following reasons:\n\n-   Includes pre-tested templates and convenience functions for a set of common Eval \u201ctasks\u201d\n-   Data science rigor applied to the testing of model and template combinations\n-   Designed to run as fast as possible on batches of data\n-   Includes benchmark datasets and tests for each eval function\n\n## Installation\n\nInstall the arize-phoenix sub-package via `pip`\n\n```shell\npip install arize-phoenix-evals\n```\n\nNote you will also have to install the LLM vendor SDK you would like to use with LLM Evals. For example, to use OpenAI's GPT-4, you will need to install the OpenAI Python SDK:\n\n```shell\npip install 'openai>=1.0.0'\n```\n\n## Usage\n\nHere is an example of running the RAG relevance eval on a dataset of Wikipedia questions and answers:\n\n```python\nimport os\nfrom phoenix.evals import (\n    RAG_RELEVANCY_PROMPT_TEMPLATE,\n    RAG_RELEVANCY_PROMPT_RAILS_MAP,\n    OpenAIModel,\n    download_benchmark_dataset,\n    llm_classify,\n)\nfrom sklearn.metrics import precision_recall_fscore_support, confusion_matrix, ConfusionMatrixDisplay\n\nos.environ[\"OPENAI_API_KEY\"] = \"<your-openai-key>\"\n\n# Download the benchmark golden dataset\ndf = download_benchmark_dataset(\n    task=\"binary-relevance-classification\", dataset_name=\"wiki_qa-train\"\n)\n# Sample and re-name the columns to match the template\ndf = df.sample(100)\ndf = df.rename(\n    columns={\n        \"query_text\": \"input\",\n        \"document_text\": \"reference\",\n    },\n)\nmodel = OpenAIModel(\n    model=\"gpt-4\",\n    temperature=0.0,\n)\n\n\nrails =list(RAG_RELEVANCY_PROMPT_RAILS_MAP.values())\ndf[[\"eval_relevance\"]] = llm_classify(df, model, RAG_RELEVANCY_PROMPT_TEMPLATE, rails)\n#Golden dataset has True/False map to -> \"irrelevant\" / \"relevant\"\n#we can then scikit compare to output of template - same format\ny_true = df[\"relevant\"].map({True: \"relevant\", False: \"irrelevant\"})\ny_pred = df[\"eval_relevance\"]\n\n# Compute Per-Class Precision, Recall, F1 Score, Support\nprecision, recall, f1, support = precision_recall_fscore_support(y_true, y_pred)\n```\n\nTo learn more about LLM Evals, see the [LLM Evals documentation](https://docs.arize.com/phoenix/concepts/llm-evals/).\n",
    "bugtrack_url": null,
    "license": "Elastic-2.0",
    "summary": "LLM Evaluations",
    "version": "0.17.4",
    "project_urls": {
        "Documentation": "https://docs.arize.com/phoenix/",
        "Issues": "https://github.com/Arize-ai/phoenix/issues",
        "Source": "https://github.com/Arize-ai/phoenix"
    },
    "split_keywords": [
        "explainability",
        " monitoring",
        " observability"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b388b0879d492ca2e13b02b1e535190cfe3c03674297e9151937830d5578d92c",
                "md5": "10804bac9421c481a99f371e58e394cd",
                "sha256": "c24ca7478aa68077a16d5350c222ae947cd9aabafd0d69844a6b8e42b7259d6d"
            },
            "downloads": -1,
            "filename": "arize_phoenix_evals-0.17.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "10804bac9421c481a99f371e58e394cd",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.14,>=3.8",
            "size": 57055,
            "upload_time": "2024-11-12T20:09:57",
            "upload_time_iso_8601": "2024-11-12T20:09:57.578827Z",
            "url": "https://files.pythonhosted.org/packages/b3/88/b0879d492ca2e13b02b1e535190cfe3c03674297e9151937830d5578d92c/arize_phoenix_evals-0.17.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "33e38693a1fc84c1520c3fc5e56a75cc7642d7e04e4cc5716285618433d1d77c",
                "md5": "1e332034390d81ad2efdb636f534c5e3",
                "sha256": "c04fc759c2669110f5a5152dd63af50a1e43280a64e444f308d178e354b08c0f"
            },
            "downloads": -1,
            "filename": "arize_phoenix_evals-0.17.4.tar.gz",
            "has_sig": false,
            "md5_digest": "1e332034390d81ad2efdb636f534c5e3",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.14,>=3.8",
            "size": 43510,
            "upload_time": "2024-11-12T20:09:59",
            "upload_time_iso_8601": "2024-11-12T20:09:59.317740Z",
            "url": "https://files.pythonhosted.org/packages/33/e3/8693a1fc84c1520c3fc5e56a75cc7642d7e04e4cc5716285618433d1d77c/arize_phoenix_evals-0.17.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-12 20:09:59",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Arize-ai",
    "github_project": "phoenix",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "tox": true,
    "lcname": "arize-phoenix-evals"
}
        
Elapsed time: 1.38750s