| Name | arm-test-data JSON |
| Version |
0.1.2
JSON |
| download |
| home_page | None |
| Summary | Provides utility functions for accessing data repository for ARM data examples/notebooks |
| upload_time | 2025-10-07 15:26:48 |
| maintainer | None |
| docs_url | None |
| author | Atmospheric Data Community Toolkit Dev Team |
| requires_python | >=3.8 |
| license | MIT License
Copyright (c) 2023 ARM User Facility
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
|
| keywords |
arm-test-data
atmosphere
meteorology
|
| VCS |
 |
| bugtrack_url |
|
| requirements |
pooch
|
| Travis-CI |
No Travis.
|
| coveralls test coverage |
No coveralls.
|
# arm-test-data
[](https://github.com/ARM-DOE/arm-test-data/actions/workflows/ci.yaml)
[](https://pypi.python.org/pypi/arm-test-data)
[](https://anaconda.org/conda-forge/arm-test-data)
A place to share atmospheric data with the community, shared throughout the Atmospheric Radiation Measurement user facility and beyond!
## Sample data sets
These files are used as sample data in openradar examples/notebooks and are downloaded by `arm-test-data` package:
- `201509021500.bi`
- `AAFNAV_COR_20181104_R0.ict`
- `AMF_US-CU1_BASE_HH_1-5.csv`
- `AMF_US-CU1_BIF_20250318.xlsx`
- `NEON.D18.BARR.DP1.00002.001.000.010.001.SAAT_1min.2022-10.expanded.20221107T205629Z.csv`
- `NEON.D18.BARR.DP1.00002.001.sensor_positions.20221107T205629Z.csv`
- `NEON.D18.BARR.DP1.00002.001.variables.20221201T110553Z.csv`
- `anltwr_mar19met.data`
- `ayp22199.21m`
- `ayp22200.00m`
- `brw21001.dat`
- `brw_12_2020_hour.dat`
- `brw_CCl4_Day.dat`
- `co2_brw_surface-insitu_1_ccgg_MonthlyData.txt`
- `ctd21125.15w`
- `ctd22187.00t.txt`
- `enametC1.b1.20221109.000000.cdf`
- `gucmetM1.b1.20230301.000000.cdf`
- `list_of_files.txt`
- `maraosmetM1.a1.20180201.000000.nc`
- `marirtsstM1.b1.20190320.000000.nc`
- `marnavM1.a1.20180201.000000.nc`
- `met_brw_insitu_1_obop_hour_2020.txt`
- `met_lcl.nc`
- `mosaossp2M1.00.20191216.000601.raw.20191216000000.ini`
- `mosaossp2M1.00.20191216.130601.raw.20191216x193.sp2b`
- `mosaossp2auxM1.00.20191217.010801.raw.20191216000000.hk`
- `nsacloudphaseC1.c1.20180601.000000.nc`
- `nsasurfspecalb1mlawerC1.c1.20160609.080000.nc`
- `sgp30ebbrE13.b1.20190601.000000.nc`
- `sgp30ebbrE32.b1.20191125.000000.nc`
- `sgp30ebbrE32.b1.20191130.000000.nc`
- `sgp30ecorE14.b1.20190601.000000.cdf`
- `sgpaerich1C1.b1.20190501.000342.nc`
- `sgpaosacsmE13.b2.20230420.000109.nc`
- `sgpaosccn2colaE13.b1.20170903.000000.nc`
- `sgpbrsC1.b1.20190705.000000.cdf`
- `sgpceilC1.b1.20190101.000000.nc`
- `sgpco2flx4mC1.b1.20201007.001500.nc`
- `sgpdlppiC1.b1.20191015.120023.cdf`
- `sgpdlppiC1.b1.20191015.121506.cdf`
- `sgpirt25m20sC1.a0.20190601.000000.cdf`
- `sgpmetE13.b1.20190101.000000.cdf`
- `sgpmetE13.b1.20190102.000000.cdf`
- `sgpmetE13.b1.20190103.000000.cdf`
- `sgpmetE13.b1.20190104.000000.cdf`
- `sgpmetE13.b1.20190105.000000.cdf`
- `sgpmetE13.b1.20190106.000000.cdf`
- `sgpmetE13.b1.20190107.000000.cdf`
- `sgpmetE13.b1.20190508.000000.cdf`
- `sgpmetE13.b1.20210401.000000.csv`
- `sgpmetE13.b1.yaml`
- `sgpmetE15.b1.20190508.000000.cdf`
- `sgpmetE31.b1.20190508.000000.cdf`
- `sgpmetE32.b1.20190508.000000.cdf`
- `sgpmetE33.b1.20190508.000000.cdf`
- `sgpmetE34.b1.20190508.000000.cdf`
- `sgpmetE35.b1.20190508.000000.cdf`
- `sgpmetE36.b1.20190508.000000.cdf`
- `sgpmetE37.b1.20190508.000000.cdf`
- `sgpmetE38.b1.20190508.000000.cdf`
- `sgpmetE39.b1.20190508.000000.cdf`
- `sgpmetE40.b1.20190508.000000.cdf`
- `sgpmetE9.b1.20190508.000000.cdf`
- `sgpmet_no_time.nc`
- `sgpmet_test_time.nc`
- `sgpmfrsr7nchE11.b1.20210329.070000.nc`
- `sgpmmcrC1.b1.1.cdf`
- `sgpmmcrC1.b1.2.cdf`
- `sgpmplpolfsC1.b1.20190502.000000.cdf`
- `sgprlC1.a0.20160131.000000.nc`
- `sgpsebsE14.b1.20190601.000000.cdf`
- `sgpsirsE13.b1.20190101.000000.cdf`
- `sgpsondewnpnC1.b1.20190101.053200.cdf`
- `sgpstampE13.b1.20200101.000000.nc`
- `sgpstampE31.b1.20200101.000000.nc`
- `sgpstampE32.b1.20200101.000000.nc`
- `sgpstampE33.b1.20200101.000000.nc`
- `sgpstampE34.b1.20200101.000000.nc`
- `sgpstampE9.b1.20200101.000000.nc`
- `sodar.20230404.mnd`
- `twpsondewnpnC3.b1.20060119.050300.custom.cdf`
- `twpsondewnpnC3.b1.20060119.112000.custom.cdf`
- `twpsondewnpnC3.b1.20060119.163300.custom.cdf`
- `twpsondewnpnC3.b1.20060119.231600.custom.cdf`
- `twpsondewnpnC3.b1.20060120.043800.custom.cdf`
- `twpsondewnpnC3.b1.20060120.111900.custom.cdf`
- `twpsondewnpnC3.b1.20060120.170800.custom.cdf`
- `twpsondewnpnC3.b1.20060120.231500.custom.cdf`
- `twpsondewnpnC3.b1.20060121.051500.custom.cdf`
- `twpsondewnpnC3.b1.20060121.111600.custom.cdf`
- `twpsondewnpnC3.b1.20060121.171600.custom.cdf`
- `twpsondewnpnC3.b1.20060121.231600.custom.cdf`
- `twpsondewnpnC3.b1.20060122.052600.custom.cdf`
- `twpsondewnpnC3.b1.20060122.111500.custom.cdf`
- `twpsondewnpnC3.b1.20060122.171800.custom.cdf`
- `twpsondewnpnC3.b1.20060122.232600.custom.cdf`
- `twpsondewnpnC3.b1.20060123.052500.custom.cdf`
- `twpsondewnpnC3.b1.20060123.111700.custom.cdf`
- `twpsondewnpnC3.b1.20060123.171600.custom.cdf`
- `twpsondewnpnC3.b1.20060123.231500.custom.cdf`
- `twpsondewnpnC3.b1.20060124.051500.custom.cdf`
- `twpsondewnpnC3.b1.20060124.111800.custom.cdf`
- `twpsondewnpnC3.b1.20060124.171700.custom.cdf`
- `twpsondewnpnC3.b1.20060124.231500.custom.cdf`
- `twpvisstgridirtemp.c1.20050705.002500.nc`
- `vdis.b1`
## Adding new datasets
To add a new dataset file, please follow these steps:
1. Add the dataset file to the `data/` directory
2. From the command line, run `python make_registry.py` script to update the registry file residing in `arm-test-data/registry.txt`
3. Commit and push your changes to GitHub
## Using datasets in notebooks and/or scripts
- Ensure the `arm-test-data` package is installed in your environment
```bash
python -m pip install arm-test-data
# or
python -m pip install git+https://github.com/ARM-DOE/arm-test-data
# or
conda install -c conda-forge arm-test-data
```
- Import `DATASETS` and inspect the registry to find out which datasets are available
```python
In [1]: from arm_test_data import DATASETS
In [2]: DATASETS.registry_files
Out[2]: ['sample_file.nc`]
```
- To fetch a data file of interest, use the `.fetch` method and provide the filename of the data file. This will
- download and cache the file if it doesn't exist already.
- retrieve and return the local path
```python
In [4]: filepath = DATASETS.fetch('sample_data.nc')
In [5]: filepath
Out[5]: '/Users/mgrover/Library/Caches/arm-test-data/sample_sgp_data.nc'
```
- Once you have access to the local filepath, you can then use it to load your dataset into pandas or xarray or your package of choice:
```python
In [6]: radar = pyart.io.read(filepath)
```
## Changing the default data cache location
The default cache location (where the data are saved on your local system) is dependent on the operating system. You can use the `locate()` method to identify it:
```python
from arm_test_data import locate
locate()
```
The location can be overwritten by the `ACT_TEST_DATA_DIR` environment
variable to the desired destination.
## References
### Ameriflux data
AmeriFlux BASE: https://doi.org/10.17190/AMF/2531143
Citation: Bhupendra Raut, Sujan Pal, Paytsar Muradyan, Joseph R. O'Brien, Max Berkelhammer, Matthew Tuftedal, Max Grover, Scott Collis, Robert C. Jackson (2025), AmeriFlux BASE US-CU1 UIC Plant Research Laboratory Chicago, Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2531143
Raw data
{
"_id": null,
"home_page": null,
"name": "arm-test-data",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "arm-test-data, atmosphere, meteorology",
"author": "Atmospheric Data Community Toolkit Dev Team",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/56/72/a0ea1927342ab59bb3bddfd6b5941949b210a9e58983daff891527374630/arm_test_data-0.1.2.tar.gz",
"platform": null,
"description": "# arm-test-data\n[](https://github.com/ARM-DOE/arm-test-data/actions/workflows/ci.yaml)\n[](https://pypi.python.org/pypi/arm-test-data)\n[](https://anaconda.org/conda-forge/arm-test-data)\n\nA place to share atmospheric data with the community, shared throughout the Atmospheric Radiation Measurement user facility and beyond!\n\n## Sample data sets\n\nThese files are used as sample data in openradar examples/notebooks and are downloaded by `arm-test-data` package:\n\n- `201509021500.bi`\n- `AAFNAV_COR_20181104_R0.ict`\n- `AMF_US-CU1_BASE_HH_1-5.csv`\n- `AMF_US-CU1_BIF_20250318.xlsx`\n- `NEON.D18.BARR.DP1.00002.001.000.010.001.SAAT_1min.2022-10.expanded.20221107T205629Z.csv`\n- `NEON.D18.BARR.DP1.00002.001.sensor_positions.20221107T205629Z.csv`\n- `NEON.D18.BARR.DP1.00002.001.variables.20221201T110553Z.csv`\n- `anltwr_mar19met.data`\n- `ayp22199.21m`\n- `ayp22200.00m`\n- `brw21001.dat`\n- `brw_12_2020_hour.dat`\n- `brw_CCl4_Day.dat`\n- `co2_brw_surface-insitu_1_ccgg_MonthlyData.txt`\n- `ctd21125.15w`\n- `ctd22187.00t.txt`\n- `enametC1.b1.20221109.000000.cdf`\n- `gucmetM1.b1.20230301.000000.cdf`\n- `list_of_files.txt`\n- `maraosmetM1.a1.20180201.000000.nc`\n- `marirtsstM1.b1.20190320.000000.nc`\n- `marnavM1.a1.20180201.000000.nc`\n- `met_brw_insitu_1_obop_hour_2020.txt`\n- `met_lcl.nc`\n- `mosaossp2M1.00.20191216.000601.raw.20191216000000.ini`\n- `mosaossp2M1.00.20191216.130601.raw.20191216x193.sp2b`\n- `mosaossp2auxM1.00.20191217.010801.raw.20191216000000.hk`\n- `nsacloudphaseC1.c1.20180601.000000.nc`\n- `nsasurfspecalb1mlawerC1.c1.20160609.080000.nc`\n- `sgp30ebbrE13.b1.20190601.000000.nc`\n- `sgp30ebbrE32.b1.20191125.000000.nc`\n- `sgp30ebbrE32.b1.20191130.000000.nc`\n- `sgp30ecorE14.b1.20190601.000000.cdf`\n- `sgpaerich1C1.b1.20190501.000342.nc`\n- `sgpaosacsmE13.b2.20230420.000109.nc`\n- `sgpaosccn2colaE13.b1.20170903.000000.nc`\n- `sgpbrsC1.b1.20190705.000000.cdf`\n- `sgpceilC1.b1.20190101.000000.nc`\n- `sgpco2flx4mC1.b1.20201007.001500.nc`\n- `sgpdlppiC1.b1.20191015.120023.cdf`\n- `sgpdlppiC1.b1.20191015.121506.cdf`\n- `sgpirt25m20sC1.a0.20190601.000000.cdf`\n- `sgpmetE13.b1.20190101.000000.cdf`\n- `sgpmetE13.b1.20190102.000000.cdf`\n- `sgpmetE13.b1.20190103.000000.cdf`\n- `sgpmetE13.b1.20190104.000000.cdf`\n- `sgpmetE13.b1.20190105.000000.cdf`\n- `sgpmetE13.b1.20190106.000000.cdf`\n- `sgpmetE13.b1.20190107.000000.cdf`\n- `sgpmetE13.b1.20190508.000000.cdf`\n- `sgpmetE13.b1.20210401.000000.csv`\n- `sgpmetE13.b1.yaml`\n- `sgpmetE15.b1.20190508.000000.cdf`\n- `sgpmetE31.b1.20190508.000000.cdf`\n- `sgpmetE32.b1.20190508.000000.cdf`\n- `sgpmetE33.b1.20190508.000000.cdf`\n- `sgpmetE34.b1.20190508.000000.cdf`\n- `sgpmetE35.b1.20190508.000000.cdf`\n- `sgpmetE36.b1.20190508.000000.cdf`\n- `sgpmetE37.b1.20190508.000000.cdf`\n- `sgpmetE38.b1.20190508.000000.cdf`\n- `sgpmetE39.b1.20190508.000000.cdf`\n- `sgpmetE40.b1.20190508.000000.cdf`\n- `sgpmetE9.b1.20190508.000000.cdf`\n- `sgpmet_no_time.nc`\n- `sgpmet_test_time.nc`\n- `sgpmfrsr7nchE11.b1.20210329.070000.nc`\n- `sgpmmcrC1.b1.1.cdf`\n- `sgpmmcrC1.b1.2.cdf`\n- `sgpmplpolfsC1.b1.20190502.000000.cdf`\n- `sgprlC1.a0.20160131.000000.nc`\n- `sgpsebsE14.b1.20190601.000000.cdf`\n- `sgpsirsE13.b1.20190101.000000.cdf`\n- `sgpsondewnpnC1.b1.20190101.053200.cdf`\n- `sgpstampE13.b1.20200101.000000.nc`\n- `sgpstampE31.b1.20200101.000000.nc`\n- `sgpstampE32.b1.20200101.000000.nc`\n- `sgpstampE33.b1.20200101.000000.nc`\n- `sgpstampE34.b1.20200101.000000.nc`\n- `sgpstampE9.b1.20200101.000000.nc`\n- `sodar.20230404.mnd`\n- `twpsondewnpnC3.b1.20060119.050300.custom.cdf`\n- `twpsondewnpnC3.b1.20060119.112000.custom.cdf`\n- `twpsondewnpnC3.b1.20060119.163300.custom.cdf`\n- `twpsondewnpnC3.b1.20060119.231600.custom.cdf`\n- `twpsondewnpnC3.b1.20060120.043800.custom.cdf`\n- `twpsondewnpnC3.b1.20060120.111900.custom.cdf`\n- `twpsondewnpnC3.b1.20060120.170800.custom.cdf`\n- `twpsondewnpnC3.b1.20060120.231500.custom.cdf`\n- `twpsondewnpnC3.b1.20060121.051500.custom.cdf`\n- `twpsondewnpnC3.b1.20060121.111600.custom.cdf`\n- `twpsondewnpnC3.b1.20060121.171600.custom.cdf`\n- `twpsondewnpnC3.b1.20060121.231600.custom.cdf`\n- `twpsondewnpnC3.b1.20060122.052600.custom.cdf`\n- `twpsondewnpnC3.b1.20060122.111500.custom.cdf`\n- `twpsondewnpnC3.b1.20060122.171800.custom.cdf`\n- `twpsondewnpnC3.b1.20060122.232600.custom.cdf`\n- `twpsondewnpnC3.b1.20060123.052500.custom.cdf`\n- `twpsondewnpnC3.b1.20060123.111700.custom.cdf`\n- `twpsondewnpnC3.b1.20060123.171600.custom.cdf`\n- `twpsondewnpnC3.b1.20060123.231500.custom.cdf`\n- `twpsondewnpnC3.b1.20060124.051500.custom.cdf`\n- `twpsondewnpnC3.b1.20060124.111800.custom.cdf`\n- `twpsondewnpnC3.b1.20060124.171700.custom.cdf`\n- `twpsondewnpnC3.b1.20060124.231500.custom.cdf`\n- `twpvisstgridirtemp.c1.20050705.002500.nc`\n- `vdis.b1`\n\n## Adding new datasets\n\nTo add a new dataset file, please follow these steps:\n\n1. Add the dataset file to the `data/` directory\n2. From the command line, run `python make_registry.py` script to update the registry file residing in `arm-test-data/registry.txt`\n3. Commit and push your changes to GitHub\n\n## Using datasets in notebooks and/or scripts\n\n- Ensure the `arm-test-data` package is installed in your environment\n\n ```bash\n python -m pip install arm-test-data\n\n # or\n\n python -m pip install git+https://github.com/ARM-DOE/arm-test-data\n\n # or\n\n conda install -c conda-forge arm-test-data\n ```\n\n- Import `DATASETS` and inspect the registry to find out which datasets are available\n\n ```python\n In [1]: from arm_test_data import DATASETS\n\n In [2]: DATASETS.registry_files\n Out[2]: ['sample_file.nc`]\n ```\n\n- To fetch a data file of interest, use the `.fetch` method and provide the filename of the data file. This will\n\n - download and cache the file if it doesn't exist already.\n - retrieve and return the local path\n\n ```python\n In [4]: filepath = DATASETS.fetch('sample_data.nc')\n\n In [5]: filepath\n Out[5]: '/Users/mgrover/Library/Caches/arm-test-data/sample_sgp_data.nc'\n ```\n\n- Once you have access to the local filepath, you can then use it to load your dataset into pandas or xarray or your package of choice:\n\n ```python\n In [6]: radar = pyart.io.read(filepath)\n ```\n\n## Changing the default data cache location\n\nThe default cache location (where the data are saved on your local system) is dependent on the operating system. You can use the `locate()` method to identify it:\n\n```python\nfrom arm_test_data import locate\nlocate()\n```\n\nThe location can be overwritten by the `ACT_TEST_DATA_DIR` environment\nvariable to the desired destination.\n\n## References\n\n### Ameriflux data\n\nAmeriFlux BASE: https://doi.org/10.17190/AMF/2531143\nCitation: Bhupendra Raut, Sujan Pal, Paytsar Muradyan, Joseph R. O'Brien, Max Berkelhammer, Matthew Tuftedal, Max Grover, Scott Collis, Robert C. Jackson (2025), AmeriFlux BASE US-CU1 UIC Plant Research Laboratory Chicago, Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2531143\n",
"bugtrack_url": null,
"license": "MIT License\n \n Copyright (c) 2023 ARM User Facility\n \n Permission is hereby granted, free of charge, to any person obtaining a copy\n of this software and associated documentation files (the \"Software\"), to deal\n in the Software without restriction, including without limitation the rights\n to use, copy, modify, merge, publish, distribute, sublicense, and/or sell\n copies of the Software, and to permit persons to whom the Software is\n furnished to do so, subject to the following conditions:\n \n The above copyright notice and this permission notice shall be included in all\n copies or substantial portions of the Software.\n \n THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\n AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\n OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE\n SOFTWARE.\n ",
"summary": "Provides utility functions for accessing data repository for ARM data examples/notebooks",
"version": "0.1.2",
"project_urls": {
"documentation": "https://github.com/ARM-DOE/arm-test-data",
"homepage": "https://github.com/ARM-DOE/arm-test-data",
"repository": "https://github.com/ARM-DOE/arm-test-data",
"tracker": "https://github.com/ARM-DOE/arm-test-data/issues"
},
"split_keywords": [
"arm-test-data",
" atmosphere",
" meteorology"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "12ee6cc86f3ae4884ee330ab360e1c952ba8850fbbcb6bdc0fa2d1ed0861ab5a",
"md5": "5617385bfec83f9b11d2b8658878e454",
"sha256": "7d68733c76e218bd32986afa6563b635974c2afb8ad4263f608e4e94ee479242"
},
"downloads": -1,
"filename": "arm_test_data-0.1.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "5617385bfec83f9b11d2b8658878e454",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 13152,
"upload_time": "2025-10-07T15:26:47",
"upload_time_iso_8601": "2025-10-07T15:26:47.575165Z",
"url": "https://files.pythonhosted.org/packages/12/ee/6cc86f3ae4884ee330ab360e1c952ba8850fbbcb6bdc0fa2d1ed0861ab5a/arm_test_data-0.1.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "5672a0ea1927342ab59bb3bddfd6b5941949b210a9e58983daff891527374630",
"md5": "3a3ce63cabc95b5d60dd81fa6d1c3223",
"sha256": "0888e24ac2d08429a146ae1626fdfa1b2a8bb06b0dcda57999d8c41fc7c8c6de"
},
"downloads": -1,
"filename": "arm_test_data-0.1.2.tar.gz",
"has_sig": false,
"md5_digest": "3a3ce63cabc95b5d60dd81fa6d1c3223",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 18428,
"upload_time": "2025-10-07T15:26:48",
"upload_time_iso_8601": "2025-10-07T15:26:48.576034Z",
"url": "https://files.pythonhosted.org/packages/56/72/a0ea1927342ab59bb3bddfd6b5941949b210a9e58983daff891527374630/arm_test_data-0.1.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-10-07 15:26:48",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ARM-DOE",
"github_project": "arm-test-data",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "pooch",
"specs": []
}
],
"lcname": "arm-test-data"
}