asgardpy


Nameasgardpy JSON
Version 0.5.1 PyPI version JSON
download
home_pageNone
SummaryGammapy-based pipeline for easy joint analysis of different gamma-ray datasets
upload_time2024-10-29 15:23:22
maintainerNone
docs_urlNone
authorNone
requires_python>=3.11
licenseApache-2.0
keywords astronomy gamma-rays data analysis
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Agardpy: Analysis Software for GAmma-Ray Data in Python
=======================================================

[![Build Status](https://github.com/chaimain/asgardpy/actions/workflows/main.yml/badge.svg?branch=main)](https://github.com/chaimain/asgardpy/actions?query=branch%3Amain) [![codecov](https://codecov.io/gh/chaimain/asgardpy/branch/main/graph/badge.svg?token=0XEI9W8AKJ)](https://codecov.io/gh/chaimain/asgardpy) [![Scrutinizer Code Quality](https://scrutinizer-ci.com/g/chaimain/asgardpy/badges/quality-score.png?b=main)](https://scrutinizer-ci.com/g/chaimain/asgardpy/?branch=main) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.8106369.svg)](https://doi.org/10.5281/zenodo.8106369) ![PyPI](https://img.shields.io/pypi/v/asgardpy?label=pypi%20asgardpy) [![OpenSSF Best Practices](https://bestpractices.coreinfrastructure.org/projects/7699/badge)](https://bestpractices.coreinfrastructure.org/projects/7699) [![gammapy](https://img.shields.io/badge/powered%20by-gammapy-orange.svg?style=flat)](https://www.gammapy.org/) [![astropy](http://img.shields.io/badge/powered%20by-AstroPy-orange.svg?style=flat)](https://www.astropy.org/)

'User-friendly' configuration-centred pipeline built over [Gammapy](https://github.com/gammapy/gammapy) to allow for easy simultaneous analysis of various datasets of different formats.
Example: 3D Fermi-LAT (with various source models in the Region of Interest stored in XML file) + 1D energy-dependent directional cuts MAGIC/LST [``PointSkyRegion`` geometry for ``ON`` region] + 1D global directional cut VERITAS [``CircleSkyRegion`` geometry for ``ON`` region].

Follow the documentation at https://asgardpy.readthedocs.io/en/latest/ for the main functionality of this pipeline.
Follow the [Gammapy v1.2](https://docs.gammapy.org/1.2/) documentation for understanding the core Gammapy objects.

The various Data Levels	used here follow the descriptions suggested by [GADF v0.3](https://gamma-astro-data-formats.readthedocs.io/en/latest/) and [CTAO](https://www.ctao.org/) Data Model.

# NOTE

For requiring support only for [Gammapy v1.1](https://docs.gammapy.org/1.1/), one may follow the latest Hotfix release [v0.4.4](https://github.com/chaimain/asgardpy/tree/v0.4.4) which benefits from the correct usage of getting EBL-deabsorbed data products as included in [v0.5.0](https://github.com/chaimain/asgardpy/tree/v0.5.0). This can be done by using

```bash
git fetch --tags
git switch -c tags/v0.4.4
```

For creating a conda environment, for this Hotfix release, one can use

```bash
conda env create -f environment_0.4.4.yml
```

and in general, for the latest release,

```bash
conda env create -f environment.yml
```

This method was included after v0.5.0, and for earlier (<v0.4.4) releases, one can simply use the gammapy conda environment and install asgardpy on top of it.

# Pipeline development

The pipeline was developed with first testing with Fermi-LAT ([enrico](https://enrico.readthedocs.io/en/latest/) and [fermipy](https://fermipy.readthedocs.io/en/latest/)) files and LST-1 ([cta-lstchain](https://cta-observatory.github.io/cta-lstchain/)) DL3 files (with energy-dependent and global directional cuts) for point-like sources.
The pipeline can be further expanded to support more types of DL3 files of gamma-ray instruments.

# Examples with Data
An example of configuration file that can be used with asgardpy can be found at ``asgardpy/config/template.yaml``

For working with some public data to check the pipeline functionality, one should first download the public dataset available with Gammapy as indicated in [Gammapy v1.2 Introduction](https://docs.gammapy.org/1.2/getting-started/index.html) and then run the ``scripts/download_asgardpy_data.sh`` script to add datasets for the full usage of the pipeline.

Examples of usage of Asgardpy is shown in jupyter [notebooks](https://github.com/chaimain/asgardpy/tree/main/notebooks).

# Cite
If you use Asgardpy in a publication, please cite the exact version you used from Zenodo _Cite_ as https://doi.org/10.5281/zenodo.8106369

# Pipeline Template

Pipeline generated based on the template by [python-package-template](https://github.com/allenai/python-package-template) with additional standards being followed -

- [PEP 517](https://peps.python.org/pep-0517)
- [PEP 518](https://peps.python.org/pep-0518/)
- [PyPA specs following PEP 621](https://packaging.python.org/en/latest/specifications/declaring-project-metadata/#declaring-project-metadata)
- [PEP 660](https://peps.python.org/pep-0660/)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "asgardpy",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.11",
    "maintainer_email": "Chaitanya Priyadarshi <chaitanya.p.astrphys@gmail.com>",
    "keywords": "Astronomy, Gamma-rays, Data analysis",
    "author": null,
    "author_email": "Chaitanya Priyadarshi <chaitanya.p.astrphys@gmail.com>, Mireia Nievas Rosillo <mnievas.work@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/32/9b/f304a26dd174d9da85993269dd2fbefcaccc9c750feafe0b364a35ea94e9/asgardpy-0.5.1.tar.gz",
    "platform": null,
    "description": "Agardpy: Analysis Software for GAmma-Ray Data in Python\n=======================================================\n\n[![Build Status](https://github.com/chaimain/asgardpy/actions/workflows/main.yml/badge.svg?branch=main)](https://github.com/chaimain/asgardpy/actions?query=branch%3Amain) [![codecov](https://codecov.io/gh/chaimain/asgardpy/branch/main/graph/badge.svg?token=0XEI9W8AKJ)](https://codecov.io/gh/chaimain/asgardpy) [![Scrutinizer Code Quality](https://scrutinizer-ci.com/g/chaimain/asgardpy/badges/quality-score.png?b=main)](https://scrutinizer-ci.com/g/chaimain/asgardpy/?branch=main) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.8106369.svg)](https://doi.org/10.5281/zenodo.8106369) ![PyPI](https://img.shields.io/pypi/v/asgardpy?label=pypi%20asgardpy) [![OpenSSF Best Practices](https://bestpractices.coreinfrastructure.org/projects/7699/badge)](https://bestpractices.coreinfrastructure.org/projects/7699) [![gammapy](https://img.shields.io/badge/powered%20by-gammapy-orange.svg?style=flat)](https://www.gammapy.org/) [![astropy](http://img.shields.io/badge/powered%20by-AstroPy-orange.svg?style=flat)](https://www.astropy.org/)\n\n'User-friendly' configuration-centred pipeline built over [Gammapy](https://github.com/gammapy/gammapy) to allow for easy simultaneous analysis of various datasets of different formats.\nExample: 3D Fermi-LAT (with various source models in the Region of Interest stored in XML file) + 1D energy-dependent directional cuts MAGIC/LST [``PointSkyRegion`` geometry for ``ON`` region] + 1D global directional cut VERITAS [``CircleSkyRegion`` geometry for ``ON`` region].\n\nFollow the documentation at https://asgardpy.readthedocs.io/en/latest/ for the main functionality of this pipeline.\nFollow the [Gammapy v1.2](https://docs.gammapy.org/1.2/) documentation for understanding the core Gammapy objects.\n\nThe various Data Levels\tused here follow the descriptions suggested by [GADF v0.3](https://gamma-astro-data-formats.readthedocs.io/en/latest/) and [CTAO](https://www.ctao.org/) Data Model.\n\n# NOTE\n\nFor requiring support only for [Gammapy v1.1](https://docs.gammapy.org/1.1/), one may follow the latest Hotfix release [v0.4.4](https://github.com/chaimain/asgardpy/tree/v0.4.4) which benefits from the correct usage of getting EBL-deabsorbed data products as included in [v0.5.0](https://github.com/chaimain/asgardpy/tree/v0.5.0). This can be done by using\n\n```bash\ngit fetch --tags\ngit switch -c tags/v0.4.4\n```\n\nFor creating a conda environment, for this Hotfix release, one can use\n\n```bash\nconda env create -f environment_0.4.4.yml\n```\n\nand in general, for the latest release,\n\n```bash\nconda env create -f environment.yml\n```\n\nThis method was included after v0.5.0, and for earlier (<v0.4.4) releases, one can simply use the gammapy conda environment and install asgardpy on top of it.\n\n# Pipeline development\n\nThe pipeline was developed with first testing with Fermi-LAT ([enrico](https://enrico.readthedocs.io/en/latest/) and [fermipy](https://fermipy.readthedocs.io/en/latest/)) files and LST-1 ([cta-lstchain](https://cta-observatory.github.io/cta-lstchain/)) DL3 files (with energy-dependent and global directional cuts) for point-like sources.\nThe pipeline can be further expanded to support more types of DL3 files of gamma-ray instruments.\n\n# Examples with Data\nAn example of configuration file that can be used with asgardpy can be found at ``asgardpy/config/template.yaml``\n\nFor working with some public data to check the pipeline functionality, one should first download the public dataset available with Gammapy as indicated in [Gammapy v1.2 Introduction](https://docs.gammapy.org/1.2/getting-started/index.html) and then run the ``scripts/download_asgardpy_data.sh`` script to add datasets for the full usage of the pipeline.\n\nExamples of usage of Asgardpy is shown in jupyter [notebooks](https://github.com/chaimain/asgardpy/tree/main/notebooks).\n\n# Cite\nIf you use Asgardpy in a publication, please cite the exact version you used from Zenodo _Cite_ as https://doi.org/10.5281/zenodo.8106369\n\n# Pipeline Template\n\nPipeline generated based on the template by [python-package-template](https://github.com/allenai/python-package-template) with additional standards being followed -\n\n- [PEP 517](https://peps.python.org/pep-0517)\n- [PEP 518](https://peps.python.org/pep-0518/)\n- [PyPA specs following PEP 621](https://packaging.python.org/en/latest/specifications/declaring-project-metadata/#declaring-project-metadata)\n- [PEP 660](https://peps.python.org/pep-0660/)\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "Gammapy-based pipeline for easy joint analysis of different gamma-ray datasets",
    "version": "0.5.1",
    "project_urls": {
        "Documentation": "https://asgardpy.readthedocs.io/en/latest/",
        "Homepage": "https://github.com/chaimain/asgardpy",
        "Repository": "https://github.com/chaimain/asgardpy"
    },
    "split_keywords": [
        "astronomy",
        " gamma-rays",
        " data analysis"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1ffd5dfaaa8856c7986217903b8b7e96491176c1a1dc7c7421f5dee70c9293c8",
                "md5": "fcf1ce5d7979047b87a3bfc1f3e6e5ff",
                "sha256": "fb5eac6db92a5bf46c53175bd35f9cff78a1ae3ef9c2fea1c7927a69e19cde1e"
            },
            "downloads": -1,
            "filename": "asgardpy-0.5.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "fcf1ce5d7979047b87a3bfc1f3e6e5ff",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.11",
            "size": 93385,
            "upload_time": "2024-10-29T15:23:20",
            "upload_time_iso_8601": "2024-10-29T15:23:20.862014Z",
            "url": "https://files.pythonhosted.org/packages/1f/fd/5dfaaa8856c7986217903b8b7e96491176c1a1dc7c7421f5dee70c9293c8/asgardpy-0.5.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "329bf304a26dd174d9da85993269dd2fbefcaccc9c750feafe0b364a35ea94e9",
                "md5": "7f2596a7054653e51c773e21c9f37b2f",
                "sha256": "1b66d5861eb50ff61f17ba05b8c289582a2d13b33f1df2e7a7c5c73718cd4b93"
            },
            "downloads": -1,
            "filename": "asgardpy-0.5.1.tar.gz",
            "has_sig": false,
            "md5_digest": "7f2596a7054653e51c773e21c9f37b2f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.11",
            "size": 22688993,
            "upload_time": "2024-10-29T15:23:22",
            "upload_time_iso_8601": "2024-10-29T15:23:22.665369Z",
            "url": "https://files.pythonhosted.org/packages/32/9b/f304a26dd174d9da85993269dd2fbefcaccc9c750feafe0b364a35ea94e9/asgardpy-0.5.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-29 15:23:22",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "chaimain",
    "github_project": "asgardpy",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "tox": true,
    "lcname": "asgardpy"
}
        
Elapsed time: 0.32820s