astro-sedpy


Nameastro-sedpy JSON
Version 0.3.2 PyPI version JSON
download
home_page
SummarySimple tools for astronomical spectral energy distributions, particularly filter projections.
upload_time2023-08-18 01:24:42
maintainer
docs_urlNone
author
requires_python
licenseMIT License
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            sedpy
=====


Modules for storing and operating on astronomical source spectral energy distributions.

.. image:: https://github.com/bd-j/sedpy/workflows/Tests/badge.svg
  :target: https://github.com/bd-j/sedpy/actions?query=workflow%3ATests

.. image:: https://readthedocs.org/projects/sedpy/badge/?version=latest
    :target: https://sedpy.readthedocs.io/en/latest/?badge=latest
    :alt: Documentation Status

Installation & setup:
---------------------
``sedpy`` is pip installable:

.. code-block:: shell

		python -m pip install astro-sedpy

Or you can install the latest version from github:

.. code-block:: shell

		git clone https://github.com/bd-j/sedpy
		cd sedpy
		pip install .

Then in python, e.g.,

.. code-block:: python

		from sedpy import observate
		# get magnitude from a spectrum:
		filt = observate.Filter("sdss_r0")
		mag = filt.ab_mag(angstroms, f_lambda_cgs)
		# or get several magnitudes at once
		filterlist = observate.load_filters(["galex_NUV", "sdss_r0"])
		mags = observate.getSED(angstroms, f_lambda_cgs, filterlist=filters)

For the filters available by default see the `filter_list`_.
For adding transmission curves, see these `docs`_.

.. _filter_list: sedpy/data/filters/README.md
.. _docs: docs/transmissions.rst

This code can be referenced as:

.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.4582723.svg
   :target: https://doi.org/10.5281/zenodo.4582723

Description:
------------

* ``observate`` has methods for generating synthetic photometry through any filters,
  and classes for dealing with filters generally. There is some functionality for spectra
  (vaccum to air conversions).
  With a huge debt to Mike Blanton's `kcorrect <https://github.com/blanton144/kcorrect>`_ code .

* ``attenuation`` contains simple dust attenuation methods.

* ``smoothing`` methods for smoothing well-sampled spectra.

* ``extinction`` (Deprecated) classes for a detailed modeling of extinction curves,
  following the Fitzpatrick & Massa parameterizations.
  See `dust_extinction <https://dust-extinction.readthedocs.io/en/stable/>`_ instead.

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "astro-sedpy",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "",
    "author_email": "Benjamin Johnson <benjamin.johnson@cfa.harvard.edu>",
    "download_url": "https://files.pythonhosted.org/packages/c7/46/20397dc5f22192760862f6a575ba3201c6cc183b031fcea59f0118acecb7/astro-sedpy-0.3.2.tar.gz",
    "platform": null,
    "description": "sedpy\n=====\n\n\nModules for storing and operating on astronomical source spectral energy distributions.\n\n.. image:: https://github.com/bd-j/sedpy/workflows/Tests/badge.svg\n  :target: https://github.com/bd-j/sedpy/actions?query=workflow%3ATests\n\n.. image:: https://readthedocs.org/projects/sedpy/badge/?version=latest\n    :target: https://sedpy.readthedocs.io/en/latest/?badge=latest\n    :alt: Documentation Status\n\nInstallation & setup:\n---------------------\n``sedpy`` is pip installable:\n\n.. code-block:: shell\n\n\t\tpython -m pip install astro-sedpy\n\nOr you can install the latest version from github:\n\n.. code-block:: shell\n\n\t\tgit clone https://github.com/bd-j/sedpy\n\t\tcd sedpy\n\t\tpip install .\n\nThen in python, e.g.,\n\n.. code-block:: python\n\n\t\tfrom sedpy import observate\n\t\t# get magnitude from a spectrum:\n\t\tfilt = observate.Filter(\"sdss_r0\")\n\t\tmag = filt.ab_mag(angstroms, f_lambda_cgs)\n\t\t# or get several magnitudes at once\n\t\tfilterlist = observate.load_filters([\"galex_NUV\", \"sdss_r0\"])\n\t\tmags = observate.getSED(angstroms, f_lambda_cgs, filterlist=filters)\n\nFor the filters available by default see the `filter_list`_.\nFor adding transmission curves, see these `docs`_.\n\n.. _filter_list: sedpy/data/filters/README.md\n.. _docs: docs/transmissions.rst\n\nThis code can be referenced as:\n\n.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.4582723.svg\n   :target: https://doi.org/10.5281/zenodo.4582723\n\nDescription:\n------------\n\n* ``observate`` has methods for generating synthetic photometry through any filters,\n  and classes for dealing with filters generally. There is some functionality for spectra\n  (vaccum to air conversions).\n  With a huge debt to Mike Blanton's `kcorrect <https://github.com/blanton144/kcorrect>`_ code .\n\n* ``attenuation`` contains simple dust attenuation methods.\n\n* ``smoothing`` methods for smoothing well-sampled spectra.\n\n* ``extinction`` (Deprecated) classes for a detailed modeling of extinction curves,\n  following the Fitzpatrick & Massa parameterizations.\n  See `dust_extinction <https://dust-extinction.readthedocs.io/en/stable/>`_ instead.\n",
    "bugtrack_url": null,
    "license": "MIT License",
    "summary": "Simple tools for astronomical spectral energy distributions, particularly filter projections.",
    "version": "0.3.2",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ff7e2630e282003036a2d91f1f738140940698fea5942966a93509a7c57e44f4",
                "md5": "df4762a134f989d397748b8a4a4945d3",
                "sha256": "f9ba59bbd51e83216bc56e014a192dd64bd18a9db8e02b529a26ff22cc32ca16"
            },
            "downloads": -1,
            "filename": "astro_sedpy-0.3.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "df4762a134f989d397748b8a4a4945d3",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 2181713,
            "upload_time": "2023-08-18T01:24:38",
            "upload_time_iso_8601": "2023-08-18T01:24:38.656112Z",
            "url": "https://files.pythonhosted.org/packages/ff/7e/2630e282003036a2d91f1f738140940698fea5942966a93509a7c57e44f4/astro_sedpy-0.3.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c74620397dc5f22192760862f6a575ba3201c6cc183b031fcea59f0118acecb7",
                "md5": "416986ea613272161c530d2ee9c530cb",
                "sha256": "4e6f83ea541b059cba7659f7d76024b6b92b118f809cd5ddf91070d545afd13d"
            },
            "downloads": -1,
            "filename": "astro-sedpy-0.3.2.tar.gz",
            "has_sig": false,
            "md5_digest": "416986ea613272161c530d2ee9c530cb",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 2136928,
            "upload_time": "2023-08-18T01:24:42",
            "upload_time_iso_8601": "2023-08-18T01:24:42.858351Z",
            "url": "https://files.pythonhosted.org/packages/c7/46/20397dc5f22192760862f6a575ba3201c6cc183b031fcea59f0118acecb7/astro-sedpy-0.3.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-08-18 01:24:42",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "astro-sedpy"
}
        
Elapsed time: 0.12902s