[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)
# Atom
Atom is a finetuned LLAMA to create better LLMS through Pytorch Data!
## Installation
You can install the package using pip
```python
git clone https://github.com/jquesnelle/yarn
cd Atom
pip install -e .
```
### Training
To train the models, run `accelerate config` and enable DeepSpeed acceleration. `deepspeed/zero3.json` was the configuration file used for training.
```sh
# ./train.sh
```
The tokenized training data is available on [Hugging Face](https://huggingface.co/datasets/emozilla/pg_books-tokenized-bos-eos-chunked-65536) and was derived from the [pg19](https://huggingface.co/datasets/emozilla/pg19) dataset.
### Evaluation
To reproduce the evaluations, install [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) with `pip install git+https://github.com/EleutherAI/lm-evaluation-harness` and then run the two provided scripts.
```sh
# ./eval.sh
# ./eval-harness.sh
```
### Citation
```
@misc{peng2023yarn,
title={YaRN: Efficient Context Window Extension of Large Language Models},
author={Bowen Peng and Jeffrey Quesnelle and Honglu Fan and Enrico Shippole},
year={2023},
eprint={2309.00071},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
Raw data
{
"_id": null,
"home_page": "https://github.com/kyegomez/atom",
"name": "atom-torch",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.6,<4.0",
"maintainer_email": "",
"keywords": "artificial intelligence,deep learning,optimizers,Prompt Engineering",
"author": "Kye Gomez",
"author_email": "kye@apac.ai",
"download_url": "https://files.pythonhosted.org/packages/c3/1f/a948e5d9423c4b929246d79e49e91cc29132ca714a2cff2baeda30be09d6/atom_torch-0.0.2.tar.gz",
"platform": null,
"description": "[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)\n\n# Atom\nAtom is a finetuned LLAMA to create better LLMS through Pytorch Data!\n\n\n\n\n## Installation\n\nYou can install the package using pip\n\n```python\ngit clone https://github.com/jquesnelle/yarn\ncd Atom\npip install -e .\n```\n\n### Training\n\nTo train the models, run `accelerate config` and enable DeepSpeed acceleration. `deepspeed/zero3.json` was the configuration file used for training.\n\n```sh\n# ./train.sh\n```\n\nThe tokenized training data is available on [Hugging Face](https://huggingface.co/datasets/emozilla/pg_books-tokenized-bos-eos-chunked-65536) and was derived from the [pg19](https://huggingface.co/datasets/emozilla/pg19) dataset.\n\n### Evaluation\n\nTo reproduce the evaluations, install [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) with `pip install git+https://github.com/EleutherAI/lm-evaluation-harness` and then run the two provided scripts.\n\n```sh\n# ./eval.sh\n# ./eval-harness.sh\n```\n\n### Citation\n\n```\n@misc{peng2023yarn,\n title={YaRN: Efficient Context Window Extension of Large Language Models}, \n author={Bowen Peng and Jeffrey Quesnelle and Honglu Fan and Enrico Shippole},\n year={2023},\n eprint={2309.00071},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n```",
"bugtrack_url": null,
"license": "MIT",
"summary": "atom - Pytorch",
"version": "0.0.2",
"project_urls": {
"Homepage": "https://github.com/kyegomez/atom",
"Repository": "https://github.com/kyegomez/atom"
},
"split_keywords": [
"artificial intelligence",
"deep learning",
"optimizers",
"prompt engineering"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "80f46c4c5f1a17aa98a8040e7b40bf27b944c75eab06d3650f7113b3692607c1",
"md5": "a5223b9049819cd45ba89e1ea5ced8f4",
"sha256": "2ebe961645855f9a97a204bc4b0bf3ccdb1a3a643a37ec39edb4f90702c79800"
},
"downloads": -1,
"filename": "atom_torch-0.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "a5223b9049819cd45ba89e1ea5ced8f4",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6,<4.0",
"size": 33631,
"upload_time": "2023-09-08T22:17:31",
"upload_time_iso_8601": "2023-09-08T22:17:31.908209Z",
"url": "https://files.pythonhosted.org/packages/80/f4/6c4c5f1a17aa98a8040e7b40bf27b944c75eab06d3650f7113b3692607c1/atom_torch-0.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c31fa948e5d9423c4b929246d79e49e91cc29132ca714a2cff2baeda30be09d6",
"md5": "ab8e589b013234a4b621ac0aefa20832",
"sha256": "6483a3a259491dbd88348fc14a657adf7c53e4f387bd3ecb7de4d21192a0ab76"
},
"downloads": -1,
"filename": "atom_torch-0.0.2.tar.gz",
"has_sig": false,
"md5_digest": "ab8e589b013234a4b621ac0aefa20832",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6,<4.0",
"size": 32202,
"upload_time": "2023-09-08T22:17:33",
"upload_time_iso_8601": "2023-09-08T22:17:33.628548Z",
"url": "https://files.pythonhosted.org/packages/c3/1f/a948e5d9423c4b929246d79e49e91cc29132ca714a2cff2baeda30be09d6/atom_torch-0.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-09-08 22:17:33",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "kyegomez",
"github_project": "atom",
"github_not_found": true,
"lcname": "atom-torch"
}