atom2vec


Nameatom2vec JSON
Version 1.1.0 PyPI version JSON
download
home_page
SummaryA python implement of Atom2Vec: a simple way to describe atoms for machine learning
upload_time2024-02-23 21:43:42
maintainer
docs_urlNone
author
requires_python>=3.8
license
keywords material science machine learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Atom2Vec
A python implement of Atom2Vec: a simple way to describe atoms for machine learning

(*Updated 06/21/2021*: We refactored the code with `pymatgen`, you can find old version in branch `old_version`. Now the code is fully typed and tested.)
## Background
Atom2Vec is first proposed on [Zhou Q, Tang P, Liu S, et al. Learning atoms for materials discovery[J]. Proceedings of the National Academy of Sciences, 2018, 115(28): E6411-E6417.](https://www.pnas.org/content/115/28/E6411#page)

## Demo
[![Atom Similarity Demo](docs/atom_sim_vis.png)](https://old.yuxingfei.com/src/similarity.html)

## Installation
```shell
pip install atom2vec
```

## Usage
### Generating atom vectors and atom similarity matrix
We use `pymatgen.core.Structure` to store all the structures. 
```python
from atom2vec import AtomSimilarity
from pymatgen.core import Structure
from typing import List

structures: List[Structure]
atom_similarity = AtomSimilarity.from_structures(structures, 
                                                 k_dim=100, max_elements=3)
```

### Query atom vectors
```python
from atom2vec import AtomSimilarity
from pymatgen.core import Element
from typing import List

atom_similarity: AtomSimilarity
atom_vector: List[float]

atom_vector = atom_similarity.get_atom_vector(1)  # atomic index
atom_vector = atom_similarity.get_atom_vector("H")  # atom's name
atom_vector = atom_similarity.get_atom_vector(Element("H"))  # pymatgen Element Enum
```

### Query atom similarity
```python
from atom2vec import AtomSimilarity
from pymatgen.core import Element

atom_similarity: AtomSimilarity
similarity: float

similarity = atom_similarity["Ca", "Sr"]
```

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "atom2vec",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "",
    "keywords": "material science,machine learning",
    "author": "",
    "author_email": "Yuxing Fei <yuxingfei@berkeley.edu>",
    "download_url": "https://files.pythonhosted.org/packages/d9/dc/085e2083d603006e1e22fd125ec11f01babd8ca3d40789f04d173f20b19b/atom2vec-1.1.0.tar.gz",
    "platform": null,
    "description": "# Atom2Vec\nA python implement of Atom2Vec: a simple way to describe atoms for machine learning\n\n(*Updated 06/21/2021*: We refactored the code with `pymatgen`, you can find old version in branch `old_version`. Now the code is fully typed and tested.)\n## Background\nAtom2Vec is first proposed on [Zhou Q, Tang P, Liu S, et al. Learning atoms for materials discovery[J]. Proceedings of the National Academy of Sciences, 2018, 115(28): E6411-E6417.](https://www.pnas.org/content/115/28/E6411#page)\n\n## Demo\n[![Atom Similarity Demo](docs/atom_sim_vis.png)](https://old.yuxingfei.com/src/similarity.html)\n\n## Installation\n```shell\npip install atom2vec\n```\n\n## Usage\n### Generating atom vectors and atom similarity matrix\nWe use `pymatgen.core.Structure` to store all the structures. \n```python\nfrom atom2vec import AtomSimilarity\nfrom pymatgen.core import Structure\nfrom typing import List\n\nstructures: List[Structure]\natom_similarity = AtomSimilarity.from_structures(structures, \n                                                 k_dim=100, max_elements=3)\n```\n\n### Query atom vectors\n```python\nfrom atom2vec import AtomSimilarity\nfrom pymatgen.core import Element\nfrom typing import List\n\natom_similarity: AtomSimilarity\natom_vector: List[float]\n\natom_vector = atom_similarity.get_atom_vector(1)  # atomic index\natom_vector = atom_similarity.get_atom_vector(\"H\")  # atom's name\natom_vector = atom_similarity.get_atom_vector(Element(\"H\"))  # pymatgen Element Enum\n```\n\n### Query atom similarity\n```python\nfrom atom2vec import AtomSimilarity\nfrom pymatgen.core import Element\n\natom_similarity: AtomSimilarity\nsimilarity: float\n\nsimilarity = atom_similarity[\"Ca\", \"Sr\"]\n```\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "A python implement of Atom2Vec: a simple way to describe atoms for machine learning",
    "version": "1.1.0",
    "project_urls": {
        "Repository": "https://github.com/idocx/atom2vec"
    },
    "split_keywords": [
        "material science",
        "machine learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "52f88024b047558fd47b49521de8d62a9071b3d5da75cef8c6ff8367d93d81c2",
                "md5": "e961a831a4e3b20d05bdbff5e5b95d93",
                "sha256": "b2a1229d94b0af56dadcfb2772fb718dab6583e65f9182871779e744218bfc62"
            },
            "downloads": -1,
            "filename": "atom2vec-1.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e961a831a4e3b20d05bdbff5e5b95d93",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 3845,
            "upload_time": "2024-02-23T21:43:41",
            "upload_time_iso_8601": "2024-02-23T21:43:41.031301Z",
            "url": "https://files.pythonhosted.org/packages/52/f8/8024b047558fd47b49521de8d62a9071b3d5da75cef8c6ff8367d93d81c2/atom2vec-1.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d9dc085e2083d603006e1e22fd125ec11f01babd8ca3d40789f04d173f20b19b",
                "md5": "95a05315753837b61ede0bf977dbdcef",
                "sha256": "f0655301b87c831102b609149e7267f2a03f962866803f61ef7d8011a9723cec"
            },
            "downloads": -1,
            "filename": "atom2vec-1.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "95a05315753837b61ede0bf977dbdcef",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 4584,
            "upload_time": "2024-02-23T21:43:42",
            "upload_time_iso_8601": "2024-02-23T21:43:42.047341Z",
            "url": "https://files.pythonhosted.org/packages/d9/dc/085e2083d603006e1e22fd125ec11f01babd8ca3d40789f04d173f20b19b/atom2vec-1.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-23 21:43:42",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "idocx",
    "github_project": "atom2vec",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "atom2vec"
}
        
Elapsed time: 0.21058s