# bedmess
bedmess is a tool used to standardize genomics/epigenomics metadata based on a schema chosen by the user ( eg. ENCODE, FAIRTRACKS).
Presently, bedmess only provides standardization according to the ENCODE schema.
You can install the `attribute_standardizer` by:
```
pip install attribute-standardizer
```
## Usage
Using Python, this is how you can run `attribute_standardizer` :
```
from attribute_standardizer.attribute_standardizer import attr_standardizer
attr_standardizer(pep=/path/to/pep, schema="ENCODE")
```
You can use the format provided in the `trial.py` script in this repository as a reference.
Raw data
{
"_id": null,
"home_page": "https://github.com/databio/bedmess/",
"name": "attribute-standardizer",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "project, metadata, bioinformatics",
"author": "Saanika Tambe",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/89/dc/9887716d3ccbcb904b961cda8a11f898c25518e7d2da4c15e92581077cd7/attribute_standardizer-0.1.1.tar.gz",
"platform": null,
"description": "# bedmess\n\nbedmess is a tool used to standardize genomics/epigenomics metadata based on a schema chosen by the user ( eg. ENCODE, FAIRTRACKS).\n\n\nPresently, bedmess only provides standardization according to the ENCODE schema.\n\n\nYou can install the `attribute_standardizer` by:\n\n```\npip install attribute-standardizer\n\n```\n\n## Usage\n\nUsing Python, this is how you can run `attribute_standardizer` :\n\n\n```\nfrom attribute_standardizer.attribute_standardizer import attr_standardizer\n\nattr_standardizer(pep=/path/to/pep, schema=\"ENCODE\")\n```\n\nYou can use the format provided in the `trial.py` script in this repository as a reference. \n",
"bugtrack_url": null,
"license": "BSD2",
"summary": "BEDMess attribute standardizer for metadata attribute standardization",
"version": "0.1.1",
"project_urls": {
"Homepage": "https://github.com/databio/bedmess/"
},
"split_keywords": [
"project",
" metadata",
" bioinformatics"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "b5545b7675efd1c559198d213564f4d7ce0b153ed8088a9284dd74e31ef8cdd6",
"md5": "983df543e9cb8da711e204074da7b37f",
"sha256": "978936d603200e0d13feae857527060520d6517102aa199ea0ddc08a2a864fd9"
},
"downloads": -1,
"filename": "attribute_standardizer-0.1.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "983df543e9cb8da711e204074da7b37f",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 8039,
"upload_time": "2024-07-30T18:01:11",
"upload_time_iso_8601": "2024-07-30T18:01:11.967996Z",
"url": "https://files.pythonhosted.org/packages/b5/54/5b7675efd1c559198d213564f4d7ce0b153ed8088a9284dd74e31ef8cdd6/attribute_standardizer-0.1.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "89dc9887716d3ccbcb904b961cda8a11f898c25518e7d2da4c15e92581077cd7",
"md5": "092ed4abaea5e5113ce9aa0dc518d8d5",
"sha256": "bbb396a266f89975c67005913215555d91d15846b7abedea50b6018222c2bdfe"
},
"downloads": -1,
"filename": "attribute_standardizer-0.1.1.tar.gz",
"has_sig": false,
"md5_digest": "092ed4abaea5e5113ce9aa0dc518d8d5",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 7393,
"upload_time": "2024-07-30T18:01:13",
"upload_time_iso_8601": "2024-07-30T18:01:13.535265Z",
"url": "https://files.pythonhosted.org/packages/89/dc/9887716d3ccbcb904b961cda8a11f898c25518e7d2da4c15e92581077cd7/attribute_standardizer-0.1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-07-30 18:01:13",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "databio",
"github_project": "bedmess",
"github_not_found": true,
"lcname": "attribute-standardizer"
}