
[](https://www.python.org/)
[](https://github.com/frankkramer-lab/aucmedi)
[](https://app.codecov.io/gh/frankkramer-lab/aucmedi/)
[](https://frankkramer-lab.github.io/aucmedi/reference/)
[](https://pypi.org/project/aucmedi/)
[](https://pypistats.org/packages/aucmedi)
[](https://www.gnu.org/licenses/gpl-3.0.en.html)
The open-source software AUCMEDI allows fast setup of medical image classification pipelines with state-of-the-art methods via an intuitive, high-level Python API or via an AutoML deployment through Docker/CLI.
## Resources
- Website: [AUCMEDI Website - Home](https://frankkramer-lab.github.io/aucmedi/)
- Git Repository: [GitHub - frankkramer-lab/aucmedi](https://github.com/frankkramer-lab/aucmedi)
- Documentation: [AUCMEDI Wiki - API Reference](https://frankkramer-lab.github.io/aucmedi/reference/)
- Getting Started: [AUCMEDI Website - Getting Started](https://frankkramer-lab.github.io/aucmedi/getstarted/intro/)
- Examples: [AUCMEDI Wiki - Examples](https://frankkramer-lab.github.io/aucmedi/examples/framework/)
- Tutorials: [AUCMEDI Wiki - Tutorials](https://frankkramer-lab.github.io/aucmedi/examples/tutorials/)
- Applications: [AUCMEDI Wiki - Applications](https://frankkramer-lab.github.io/aucmedi/examples/applications/)
- PyPI Package: [PyPI - aucmedi](https://pypi.org/project/aucmedi/)
- Docker Image: [GitHub - ghcr.io/frankkramer-lab/aucmedi](https://github.com/frankkramer-lab/aucmedi/pkgs/container/aucmedi)
- Zenodo Repository: [Zenodo - AUCMEDI](https://zenodo.org/record/6633540)
## How to cite
AUCMEDI is currently unpublished. But coming soon!
In the meantime:
Please cite our base framework MIScnn as well as the AUCMEDI GitHub repository:
```
Müller, D., Kramer, F. MIScnn: a framework for medical image segmentation with
convolutional neural networks and deep learning. BMC Med Imaging 21, 12 (2021).
https://doi.org/10.1186/s12880-020-00543-7
```
```
Müller, D., Mayer, S., Hartmann, D., Meyer, P., Schneider, P., Soto-Rey, I., & Kramer, F. (2022).
AUCMEDI: a framework for Automated Classification of Medical Images (Version X.Y.Z) [Computer software].
GitHub repository. https://github.com/frankkramer-lab/aucmedi
```
Thank you for citing our work.
### Lead Author
Dominik Müller\
Email: dominik.mueller@informatik.uni-augsburg.de\
IT-Infrastructure for Translational Medical Research\
University Augsburg\
Bavaria, Germany
## License
This project is licensed under the GNU GENERAL PUBLIC LICENSE Version 3.\
See the LICENSE.md file for license rights and limitations.
Raw data
{
"_id": null,
"home_page": "https://frankkramer-lab.github.io/aucmedi/",
"name": "aucmedi",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": null,
"author": "Dominik M\u00fcller",
"author_email": "dominik.mueller@informatik.uni-augsburg.de",
"download_url": "https://files.pythonhosted.org/packages/b4/a7/b310e6be5effc5b972f4343efafbce7fec02a7322ac2fa63429d1eb9e80b/aucmedi-0.11.0.tar.gz",
"platform": null,
"description": "\n\n[](https://www.python.org/)\n[](https://github.com/frankkramer-lab/aucmedi)\n[](https://app.codecov.io/gh/frankkramer-lab/aucmedi/)\n[](https://frankkramer-lab.github.io/aucmedi/reference/)\n[](https://pypi.org/project/aucmedi/)\n[](https://pypistats.org/packages/aucmedi)\n[](https://www.gnu.org/licenses/gpl-3.0.en.html)\n\nThe open-source software AUCMEDI allows fast setup of medical image classification pipelines with state-of-the-art methods via an intuitive, high-level Python API or via an AutoML deployment through Docker/CLI.\n\n## Resources\n- Website: [AUCMEDI Website - Home](https://frankkramer-lab.github.io/aucmedi/)\n- Git Repository: [GitHub - frankkramer-lab/aucmedi](https://github.com/frankkramer-lab/aucmedi)\n- Documentation: [AUCMEDI Wiki - API Reference](https://frankkramer-lab.github.io/aucmedi/reference/)\n- Getting Started: [AUCMEDI Website - Getting Started](https://frankkramer-lab.github.io/aucmedi/getstarted/intro/)\n- Examples: [AUCMEDI Wiki - Examples](https://frankkramer-lab.github.io/aucmedi/examples/framework/)\n- Tutorials: [AUCMEDI Wiki - Tutorials](https://frankkramer-lab.github.io/aucmedi/examples/tutorials/)\n- Applications: [AUCMEDI Wiki - Applications](https://frankkramer-lab.github.io/aucmedi/examples/applications/)\n- PyPI Package: [PyPI - aucmedi](https://pypi.org/project/aucmedi/)\n- Docker Image: [GitHub - ghcr.io/frankkramer-lab/aucmedi](https://github.com/frankkramer-lab/aucmedi/pkgs/container/aucmedi)\n- Zenodo Repository: [Zenodo - AUCMEDI](https://zenodo.org/record/6633540)\n\n## How to cite\n\nAUCMEDI is currently unpublished. But coming soon!\n\nIn the meantime: \nPlease cite our base framework MIScnn as well as the AUCMEDI GitHub repository:\n\n```\nM\u00fcller, D., Kramer, F. MIScnn: a framework for medical image segmentation with\nconvolutional neural networks and deep learning. BMC Med Imaging 21, 12 (2021).\nhttps://doi.org/10.1186/s12880-020-00543-7\n```\n\n```\nM\u00fcller, D., Mayer, S., Hartmann, D., Meyer, P., Schneider, P., Soto-Rey, I., & Kramer, F. (2022).\nAUCMEDI: a framework for Automated Classification of Medical Images (Version X.Y.Z) [Computer software].\nGitHub repository. https://github.com/frankkramer-lab/aucmedi\n```\n\nThank you for citing our work.\n\n### Lead Author\n\nDominik M\u00fcller\\\nEmail: dominik.mueller@informatik.uni-augsburg.de\\\nIT-Infrastructure for Translational Medical Research\\\nUniversity Augsburg\\\nBavaria, Germany\n\n## License\n\nThis project is licensed under the GNU GENERAL PUBLIC LICENSE Version 3.\\\nSee the LICENSE.md file for license rights and limitations.\n",
"bugtrack_url": null,
"license": "GPLv3",
"summary": "AUCMEDI - a framework for Automated Classification of Medical Images",
"version": "0.11.0",
"project_urls": {
"Bug Tracker": "https://github.com/frankkramer-lab/aucmedi/issues",
"Documentation": "https://frankkramer-lab.github.io/aucmedi/reference/",
"Homepage": "https://frankkramer-lab.github.io/aucmedi/",
"Source Code": "https://github.com/frankkramer-lab/aucmedi"
},
"split_keywords": [],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "5e3f0f50b24d54b30c81f099512fcea97defbaa855c4509d1d3ce028e33b0a56",
"md5": "6bdd4b5371130da4a7a5a9be4dfb7951",
"sha256": "823cb91bc7a9380fb1084f33cc03610281a01aed645133dcbc1088d1ea61f582"
},
"downloads": -1,
"filename": "aucmedi-0.11.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "6bdd4b5371130da4a7a5a9be4dfb7951",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 361517,
"upload_time": "2025-07-21T14:52:42",
"upload_time_iso_8601": "2025-07-21T14:52:42.343928Z",
"url": "https://files.pythonhosted.org/packages/5e/3f/0f50b24d54b30c81f099512fcea97defbaa855c4509d1d3ce028e33b0a56/aucmedi-0.11.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "b4a7b310e6be5effc5b972f4343efafbce7fec02a7322ac2fa63429d1eb9e80b",
"md5": "5628ca5531d13226ad9b397e0c4a77e3",
"sha256": "ac79dc823c1bc80800e0b3e8f31d91f8ac43958e4f96fcea961758513758f769"
},
"downloads": -1,
"filename": "aucmedi-0.11.0.tar.gz",
"has_sig": false,
"md5_digest": "5628ca5531d13226ad9b397e0c4a77e3",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 154799,
"upload_time": "2025-07-21T14:52:43",
"upload_time_iso_8601": "2025-07-21T14:52:43.969218Z",
"url": "https://files.pythonhosted.org/packages/b4/a7/b310e6be5effc5b972f4343efafbce7fec02a7322ac2fa63429d1eb9e80b/aucmedi-0.11.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-21 14:52:43",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "frankkramer-lab",
"github_project": "aucmedi",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "tensorflow",
"specs": [
[
"==",
"2.15.1"
]
]
},
{
"name": "numpy",
"specs": [
[
"==",
"1.23.5"
]
]
},
{
"name": "pillow",
"specs": [
[
"==",
"10.2.0"
]
]
},
{
"name": "albumentations",
"specs": [
[
"==",
"1.3.0"
]
]
},
{
"name": "pandas",
"specs": [
[
"==",
"1.5.2"
]
]
},
{
"name": "scikit-learn",
"specs": [
[
"==",
"1.3.0"
]
]
},
{
"name": "scikit-image",
"specs": [
[
"==",
"0.21.0"
]
]
},
{
"name": "lime",
"specs": [
[
"==",
"0.2.0.1"
]
]
},
{
"name": "pooch",
"specs": [
[
"==",
"1.6.0"
]
]
},
{
"name": "classification-models-3D",
"specs": [
[
"==",
"1.0.10"
]
]
},
{
"name": "Keras-Applications",
"specs": [
[
"==",
"1.0.8"
]
]
},
{
"name": "SimpleITK",
"specs": [
[
"==",
"2.2.0"
]
]
},
{
"name": "batchgenerators",
"specs": [
[
"==",
"0.25"
]
]
},
{
"name": "volumentations-aucmedi",
"specs": [
[
"==",
"1.0.1"
]
]
},
{
"name": "plotnine",
"specs": [
[
"==",
"0.12.4"
]
]
},
{
"name": "pathos",
"specs": [
[
"==",
"0.3.0"
]
]
}
],
"lcname": "aucmedi"
}