
[](https://www.python.org/)
[](https://github.com/frankkramer-lab/aucmedi)
[](https://app.codecov.io/gh/frankkramer-lab/aucmedi/)
[](https://frankkramer-lab.github.io/aucmedi/reference/)
[](https://pypi.org/project/aucmedi/)
[](https://pypistats.org/packages/aucmedi)
[](https://www.gnu.org/licenses/gpl-3.0.en.html)
The open-source software AUCMEDI allows fast setup of medical image classification pipelines with state-of-the-art methods via an intuitive, high-level Python API or via an AutoML deployment through Docker/CLI.
## Resources
- Website: [AUCMEDI Website - Home](https://frankkramer-lab.github.io/aucmedi/)
- Git Repository: [GitHub - frankkramer-lab/aucmedi](https://github.com/frankkramer-lab/aucmedi)
- Documentation: [AUCMEDI Wiki - API Reference](https://frankkramer-lab.github.io/aucmedi/reference/)
- Getting Started: [AUCMEDI Website - Getting Started](https://frankkramer-lab.github.io/aucmedi/getstarted/intro/)
- Examples: [AUCMEDI Wiki - Examples](https://frankkramer-lab.github.io/aucmedi/examples/framework/)
- Tutorials: [AUCMEDI Wiki - Tutorials](https://frankkramer-lab.github.io/aucmedi/examples/tutorials/)
- Applications: [AUCMEDI Wiki - Applications](https://frankkramer-lab.github.io/aucmedi/examples/applications/)
- PyPI Package: [PyPI - aucmedi](https://pypi.org/project/aucmedi/)
- Docker Image: [GitHub - ghcr.io/frankkramer-lab/aucmedi](https://github.com/frankkramer-lab/aucmedi/pkgs/container/aucmedi)
- Zenodo Repository: [Zenodo - AUCMEDI](https://zenodo.org/record/6633540)
## How to cite
AUCMEDI is currently unpublished. But coming soon!
In the meantime:
Please cite our base framework MIScnn as well as the AUCMEDI GitHub repository:
```
Müller, D., Kramer, F. MIScnn: a framework for medical image segmentation with
convolutional neural networks and deep learning. BMC Med Imaging 21, 12 (2021).
https://doi.org/10.1186/s12880-020-00543-7
```
```
Müller, D., Mayer, S., Hartmann, D., Meyer, P., Schneider, P., Soto-Rey, I., & Kramer, F. (2022).
AUCMEDI: a framework for Automated Classification of Medical Images (Version X.Y.Z) [Computer software].
GitHub repository. https://github.com/frankkramer-lab/aucmedi
```
Thank you for citing our work.
### Lead Author
Dominik Müller\
Email: dominik.mueller@informatik.uni-augsburg.de\
IT-Infrastructure for Translational Medical Research\
University Augsburg\
Bavaria, Germany
## License
This project is licensed under the GNU GENERAL PUBLIC LICENSE Version 3.\
See the LICENSE.md file for license rights and limitations.
Raw data
{
"_id": null,
"home_page": "https://frankkramer-lab.github.io/aucmedi/",
"name": "aucmedi",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": null,
"author": "Dominik M\u00fcller",
"author_email": "dominik.mueller@informatik.uni-augsburg.de",
"download_url": "https://files.pythonhosted.org/packages/89/3c/e85bfcf88f9686ff89e5b9859187a1b8426303e4eb3ee932b104dfecb4dc/aucmedi-0.10.0.tar.gz",
"platform": null,
"description": "\n\n[](https://www.python.org/)\n[](https://github.com/frankkramer-lab/aucmedi)\n[](https://app.codecov.io/gh/frankkramer-lab/aucmedi/)\n[](https://frankkramer-lab.github.io/aucmedi/reference/)\n[](https://pypi.org/project/aucmedi/)\n[](https://pypistats.org/packages/aucmedi)\n[](https://www.gnu.org/licenses/gpl-3.0.en.html)\n\nThe open-source software AUCMEDI allows fast setup of medical image classification pipelines with state-of-the-art methods via an intuitive, high-level Python API or via an AutoML deployment through Docker/CLI.\n\n## Resources\n- Website: [AUCMEDI Website - Home](https://frankkramer-lab.github.io/aucmedi/)\n- Git Repository: [GitHub - frankkramer-lab/aucmedi](https://github.com/frankkramer-lab/aucmedi)\n- Documentation: [AUCMEDI Wiki - API Reference](https://frankkramer-lab.github.io/aucmedi/reference/)\n- Getting Started: [AUCMEDI Website - Getting Started](https://frankkramer-lab.github.io/aucmedi/getstarted/intro/)\n- Examples: [AUCMEDI Wiki - Examples](https://frankkramer-lab.github.io/aucmedi/examples/framework/)\n- Tutorials: [AUCMEDI Wiki - Tutorials](https://frankkramer-lab.github.io/aucmedi/examples/tutorials/)\n- Applications: [AUCMEDI Wiki - Applications](https://frankkramer-lab.github.io/aucmedi/examples/applications/)\n- PyPI Package: [PyPI - aucmedi](https://pypi.org/project/aucmedi/)\n- Docker Image: [GitHub - ghcr.io/frankkramer-lab/aucmedi](https://github.com/frankkramer-lab/aucmedi/pkgs/container/aucmedi)\n- Zenodo Repository: [Zenodo - AUCMEDI](https://zenodo.org/record/6633540)\n\n## How to cite\n\nAUCMEDI is currently unpublished. But coming soon!\n\nIn the meantime: \nPlease cite our base framework MIScnn as well as the AUCMEDI GitHub repository:\n\n```\nM\u00fcller, D., Kramer, F. MIScnn: a framework for medical image segmentation with\nconvolutional neural networks and deep learning. BMC Med Imaging 21, 12 (2021).\nhttps://doi.org/10.1186/s12880-020-00543-7\n```\n\n```\nM\u00fcller, D., Mayer, S., Hartmann, D., Meyer, P., Schneider, P., Soto-Rey, I., & Kramer, F. (2022).\nAUCMEDI: a framework for Automated Classification of Medical Images (Version X.Y.Z) [Computer software].\nGitHub repository. https://github.com/frankkramer-lab/aucmedi\n```\n\nThank you for citing our work.\n\n### Lead Author\n\nDominik M\u00fcller\\\nEmail: dominik.mueller@informatik.uni-augsburg.de\\\nIT-Infrastructure for Translational Medical Research\\\nUniversity Augsburg\\\nBavaria, Germany\n\n## License\n\nThis project is licensed under the GNU GENERAL PUBLIC LICENSE Version 3.\\\nSee the LICENSE.md file for license rights and limitations.\n",
"bugtrack_url": null,
"license": "GPLv3",
"summary": "AUCMEDI - a framework for Automated Classification of Medical Images",
"version": "0.10.0",
"project_urls": {
"Bug Tracker": "https://github.com/frankkramer-lab/aucmedi/issues",
"Documentation": "https://frankkramer-lab.github.io/aucmedi/reference/",
"Homepage": "https://frankkramer-lab.github.io/aucmedi/",
"Source Code": "https://github.com/frankkramer-lab/aucmedi"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "4b64fa403abde4999a4a73c9ea8408aebbb1a5cd8b84144d167bf5ed6c845a04",
"md5": "6742744f963ba28a2ed1f6264e2214ee",
"sha256": "b96c260ee883d4e20f9ed5b3414a5e6abc454550151dc3f1be479a725379bd17"
},
"downloads": -1,
"filename": "aucmedi-0.10.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "6742744f963ba28a2ed1f6264e2214ee",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 358765,
"upload_time": "2024-10-02T11:52:59",
"upload_time_iso_8601": "2024-10-02T11:52:59.979328Z",
"url": "https://files.pythonhosted.org/packages/4b/64/fa403abde4999a4a73c9ea8408aebbb1a5cd8b84144d167bf5ed6c845a04/aucmedi-0.10.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "893ce85bfcf88f9686ff89e5b9859187a1b8426303e4eb3ee932b104dfecb4dc",
"md5": "ee5b615cb49e7da551c8c1a6153ae9c6",
"sha256": "dc2d8736301bb40310ac6e5658dbf7e272b65bf80e8ef7c675606af4efc1a6b1"
},
"downloads": -1,
"filename": "aucmedi-0.10.0.tar.gz",
"has_sig": false,
"md5_digest": "ee5b615cb49e7da551c8c1a6153ae9c6",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 152085,
"upload_time": "2024-10-02T11:53:01",
"upload_time_iso_8601": "2024-10-02T11:53:01.678861Z",
"url": "https://files.pythonhosted.org/packages/89/3c/e85bfcf88f9686ff89e5b9859187a1b8426303e4eb3ee932b104dfecb4dc/aucmedi-0.10.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-10-02 11:53:01",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "frankkramer-lab",
"github_project": "aucmedi",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "aucmedi"
}