[![Multi-Modality](agorabanner.png)](https://discord.com/servers/agora-999382051935506503)
# Audio xLSTMs: Learning Self-supervised audio representations with xLSTMs
[![Join our Discord](https://img.shields.io/badge/Discord-Join%20our%20server-5865F2?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/agora-999382051935506503) [![Subscribe on YouTube](https://img.shields.io/badge/YouTube-Subscribe-red?style=for-the-badge&logo=youtube&logoColor=white)](https://www.youtube.com/@kyegomez3242) [![Connect on LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/kye-g-38759a207/) [![Follow on X.com](https://img.shields.io/badge/X.com-Follow-1DA1F2?style=for-the-badge&logo=x&logoColor=white)](https://x.com/kyegomezb)
This is a community based approach to an implementation mostly for practice. I will implement the model architecture as defined in the paper but will leave someone else to implement the training script! So please create a training script if you have the time and energy
# License
MIT
# Citation
```bibtex
@article{xlstm,
title={xLSTM: Extended Long Short-Term Memory},
author={Beck, Maximilian and P{\"o}ppel, Korbinian and Spanring, Markus and Auer, Andreas and Prudnikova, Oleksandra and Kopp, Michael and Klambauer, G{\"u}nter and Brandstetter, Johannes and Hochreiter, Sepp},
journal={arXiv preprint arXiv:2405.04517},
year={2024}
}
```
Raw data
{
"_id": null,
"home_page": "https://github.com/kyegomez/Audio-xLSTMs",
"name": "audio-xlstm",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.10",
"maintainer_email": null,
"keywords": "artificial intelligence, deep learning, optimizers, Prompt Engineering",
"author": "Kye Gomez",
"author_email": "kye@apac.ai",
"download_url": "https://files.pythonhosted.org/packages/98/45/ee74bfdc3ee282feae4f345fb893d8db66dadaac5e3f730a23e40517a93f/audio_xlstm-0.0.1.tar.gz",
"platform": null,
"description": "[![Multi-Modality](agorabanner.png)](https://discord.com/servers/agora-999382051935506503)\n\n# Audio xLSTMs: Learning Self-supervised audio representations with xLSTMs\n\n[![Join our Discord](https://img.shields.io/badge/Discord-Join%20our%20server-5865F2?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/agora-999382051935506503) [![Subscribe on YouTube](https://img.shields.io/badge/YouTube-Subscribe-red?style=for-the-badge&logo=youtube&logoColor=white)](https://www.youtube.com/@kyegomez3242) [![Connect on LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/kye-g-38759a207/) [![Follow on X.com](https://img.shields.io/badge/X.com-Follow-1DA1F2?style=for-the-badge&logo=x&logoColor=white)](https://x.com/kyegomezb)\n\nThis is a community based approach to an implementation mostly for practice. I will implement the model architecture as defined in the paper but will leave someone else to implement the training script! So please create a training script if you have the time and energy\n\n\n\n\n# License\nMIT\n\n\n# Citation\n```bibtex\n@article{xlstm,\n title={xLSTM: Extended Long Short-Term Memory},\n author={Beck, Maximilian and P{\\\"o}ppel, Korbinian and Spanring, Markus and Auer, Andreas and Prudnikova, Oleksandra and Kopp, Michael and Klambauer, G{\\\"u}nter and Brandstetter, Johannes and Hochreiter, Sepp},\n journal={arXiv preprint arXiv:2405.04517},\n year={2024}\n}\n\n```",
"bugtrack_url": null,
"license": "MIT",
"summary": "Paper - Pytorch",
"version": "0.0.1",
"project_urls": {
"Documentation": "https://github.com/kyegomez/Audio-xLSTMs",
"Homepage": "https://github.com/kyegomez/Audio-xLSTMs",
"Repository": "https://github.com/kyegomez/Audio-xLSTMs"
},
"split_keywords": [
"artificial intelligence",
" deep learning",
" optimizers",
" prompt engineering"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "59ceb690e0b28a1fc3d8ae3a24110b97064542fad6344705afbe7b1cc5c23eb0",
"md5": "ceba1d3d5780efb550cb8333ae7c7ee9",
"sha256": "db795ea07df6216eb7dc85852dd3ed57985b6a011b0e9dd52987ae0ef29a6fff"
},
"downloads": -1,
"filename": "audio_xlstm-0.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "ceba1d3d5780efb550cb8333ae7c7ee9",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.10",
"size": 8882,
"upload_time": "2024-09-01T01:33:49",
"upload_time_iso_8601": "2024-09-01T01:33:49.813021Z",
"url": "https://files.pythonhosted.org/packages/59/ce/b690e0b28a1fc3d8ae3a24110b97064542fad6344705afbe7b1cc5c23eb0/audio_xlstm-0.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "9845ee74bfdc3ee282feae4f345fb893d8db66dadaac5e3f730a23e40517a93f",
"md5": "7dcfb954a6afda4531dff426a846181a",
"sha256": "ddf174cce127f3a921978a49f7ada318f47d86c8b08aeebe01604a4748686eec"
},
"downloads": -1,
"filename": "audio_xlstm-0.0.1.tar.gz",
"has_sig": false,
"md5_digest": "7dcfb954a6afda4531dff426a846181a",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.10",
"size": 8606,
"upload_time": "2024-09-01T01:33:51",
"upload_time_iso_8601": "2024-09-01T01:33:51.476896Z",
"url": "https://files.pythonhosted.org/packages/98/45/ee74bfdc3ee282feae4f345fb893d8db66dadaac5e3f730a23e40517a93f/audio_xlstm-0.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-01 01:33:51",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "kyegomez",
"github_project": "Audio-xLSTMs",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "audio-xlstm"
}