audmetric


Nameaudmetric JSON
Version 1.2.1 PyPI version JSON
download
home_page
SummaryEvaluate machine-learning models
upload_time2024-02-28 15:28:59
maintainer
docs_urlNone
authorJohannes Wagner, Stephan Huber, Andreas Triantafyllopoulos
requires_python
licenseMIT License Copyright (c) 2019-present audEERING GmbH and Contributors Authors: Johannes Wagner Hagen Wierstorf Uwe Reichel Maximilian Schmitt Stephan Huber Andreas Triantafyllopoulos Manuel Aguado Martínez (for equal_error_rate and detection_error_tradeoff) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
keywords mlops machine learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            =========
audmetric
=========

|tests| |coverage| |docs| |python-versions| |license|

**audmetric** includes several equations
to estimate the performance of a machine learning prediction algorithm.

Some of the metrics are also available in sklearn_,
but we wanted to have a package
which depends only on numpy_.
For those metrics
we included tests that the results are identical to sklearn_.


.. _numpy: https://numpy.org/
.. _sklearn: https://scikit-learn.org/stable/


.. badges images and links:
.. |tests| image:: https://github.com/audeering/audmetric/workflows/Test/badge.svg
    :target: https://github.com/audeering/audmetric/actions?query=workflow%3ATest
    :alt: Test status
.. |coverage| image:: https://codecov.io/gh/audeering/audmetric/branch/main/graph/badge.svg?token=wOMLYzFnDO
    :target: https://codecov.io/gh/audeering/audmetric/
    :alt: code coverage
.. |docs| image:: https://img.shields.io/pypi/v/audmetric?label=docs
    :target: https://audeering.github.io/audmetric/
    :alt: audmetric's documentation
.. |license| image:: https://img.shields.io/badge/license-MIT-green.svg
    :target: https://github.com/audeering/audmetric/blob/main/LICENSE
    :alt: audmetric's MIT license
.. |python-versions| image:: https://img.shields.io/pypi/pyversions/audmetric.svg
    :target: https://pypi.org/project/audmetric/
    :alt: audmetric's supported Python versions

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "audmetric",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "mlops,machine learning",
    "author": "Johannes Wagner, Stephan Huber, Andreas Triantafyllopoulos",
    "author_email": "Hagen Wierstorf <hwierstorf@audeering.com>, Uwe Reichel <ureichel@audeering.com>, Maximilian Schmitt <mschmitt@audeering.com>",
    "download_url": "https://files.pythonhosted.org/packages/a5/b2/a2ded39c12f2575a43334f075f21902f93439e1eb64f2cc58710aa958712/audmetric-1.2.1.tar.gz",
    "platform": null,
    "description": "=========\naudmetric\n=========\n\n|tests| |coverage| |docs| |python-versions| |license|\n\n**audmetric** includes several equations\nto estimate the performance of a machine learning prediction algorithm.\n\nSome of the metrics are also available in sklearn_,\nbut we wanted to have a package\nwhich depends only on numpy_.\nFor those metrics\nwe included tests that the results are identical to sklearn_.\n\n\n.. _numpy: https://numpy.org/\n.. _sklearn: https://scikit-learn.org/stable/\n\n\n.. badges images and links:\n.. |tests| image:: https://github.com/audeering/audmetric/workflows/Test/badge.svg\n    :target: https://github.com/audeering/audmetric/actions?query=workflow%3ATest\n    :alt: Test status\n.. |coverage| image:: https://codecov.io/gh/audeering/audmetric/branch/main/graph/badge.svg?token=wOMLYzFnDO\n    :target: https://codecov.io/gh/audeering/audmetric/\n    :alt: code coverage\n.. |docs| image:: https://img.shields.io/pypi/v/audmetric?label=docs\n    :target: https://audeering.github.io/audmetric/\n    :alt: audmetric's documentation\n.. |license| image:: https://img.shields.io/badge/license-MIT-green.svg\n    :target: https://github.com/audeering/audmetric/blob/main/LICENSE\n    :alt: audmetric's MIT license\n.. |python-versions| image:: https://img.shields.io/pypi/pyversions/audmetric.svg\n    :target: https://pypi.org/project/audmetric/\n    :alt: audmetric's supported Python versions\n",
    "bugtrack_url": null,
    "license": "MIT License  Copyright (c) 2019-present audEERING GmbH and Contributors  Authors: Johannes Wagner Hagen Wierstorf Uwe Reichel Maximilian Schmitt Stephan Huber Andreas Triantafyllopoulos Manuel Aguado Mart\u00ednez (for equal_error_rate and detection_error_tradeoff)  Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:  The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.  THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ",
    "summary": "Evaluate machine-learning models",
    "version": "1.2.1",
    "project_urls": {
        "documentation": "https://audeering.github.io/audmetric/",
        "repository": "https://github.com/audeering/audmetric/"
    },
    "split_keywords": [
        "mlops",
        "machine learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "dbfd710b4a99bb00ab9111a142efe96dd495ed02b07648ed05901f53e7694b34",
                "md5": "7213b75c74b5798f8a1f1c82c84b0765",
                "sha256": "d0ff8d791a82d5516a4e7bee985a161aa58ba4513002fd96fc139152a1a867f0"
            },
            "downloads": -1,
            "filename": "audmetric-1.2.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7213b75c74b5798f8a1f1c82c84b0765",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 27835,
            "upload_time": "2024-02-28T15:28:58",
            "upload_time_iso_8601": "2024-02-28T15:28:58.151943Z",
            "url": "https://files.pythonhosted.org/packages/db/fd/710b4a99bb00ab9111a142efe96dd495ed02b07648ed05901f53e7694b34/audmetric-1.2.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a5b2a2ded39c12f2575a43334f075f21902f93439e1eb64f2cc58710aa958712",
                "md5": "7f1dabb492afffe6a977fd24d4dc6553",
                "sha256": "670c2135b0266c0845763b9ed3ac9757fa9aada813a2fdcd607575fb73dcafa5"
            },
            "downloads": -1,
            "filename": "audmetric-1.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "7f1dabb492afffe6a977fd24d4dc6553",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 28870,
            "upload_time": "2024-02-28T15:28:59",
            "upload_time_iso_8601": "2024-02-28T15:28:59.490701Z",
            "url": "https://files.pythonhosted.org/packages/a5/b2/a2ded39c12f2575a43334f075f21902f93439e1eb64f2cc58710aa958712/audmetric-1.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-28 15:28:59",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "audeering",
    "github_project": "audmetric",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "audmetric"
}
        
Elapsed time: 2.74278s