=========
audmetric
=========
|tests| |coverage| |docs| |python-versions| |license|
**audmetric** includes several equations
to estimate the performance of a machine learning prediction algorithm.
Some of the metrics are also available in sklearn_,
but we wanted to have a package
which depends only on numpy_.
For those metrics
we included tests that the results are identical to sklearn_.
.. _numpy: https://numpy.org/
.. _sklearn: https://scikit-learn.org/stable/
.. badges images and links:
.. |tests| image:: https://github.com/audeering/audmetric/workflows/Test/badge.svg
:target: https://github.com/audeering/audmetric/actions?query=workflow%3ATest
:alt: Test status
.. |coverage| image:: https://codecov.io/gh/audeering/audmetric/branch/main/graph/badge.svg?token=wOMLYzFnDO
:target: https://codecov.io/gh/audeering/audmetric/
:alt: code coverage
.. |docs| image:: https://img.shields.io/pypi/v/audmetric?label=docs
:target: https://audeering.github.io/audmetric/
:alt: audmetric's documentation
.. |license| image:: https://img.shields.io/badge/license-MIT-green.svg
:target: https://github.com/audeering/audmetric/blob/main/LICENSE
:alt: audmetric's MIT license
.. |python-versions| image:: https://img.shields.io/pypi/pyversions/audmetric.svg
:target: https://pypi.org/project/audmetric/
:alt: audmetric's supported Python versions
Raw data
{
"_id": null,
"home_page": null,
"name": "audmetric",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": "mlops, machine learning",
"author": "Johannes Wagner, Stephan Huber, Andreas Triantafyllopoulos",
"author_email": "Hagen Wierstorf <hwierstorf@audeering.com>, Uwe Reichel <ureichel@audeering.com>, Maximilian Schmitt <mschmitt@audeering.com>",
"download_url": "https://files.pythonhosted.org/packages/bc/7a/a009f972f3d3023c8f8bd96ea50da0b215a7d99e121f22ed03351a22edac/audmetric-1.2.3.tar.gz",
"platform": null,
"description": "=========\naudmetric\n=========\n\n|tests| |coverage| |docs| |python-versions| |license|\n\n**audmetric** includes several equations\nto estimate the performance of a machine learning prediction algorithm.\n\nSome of the metrics are also available in sklearn_,\nbut we wanted to have a package\nwhich depends only on numpy_.\nFor those metrics\nwe included tests that the results are identical to sklearn_.\n\n\n.. _numpy: https://numpy.org/\n.. _sklearn: https://scikit-learn.org/stable/\n\n\n.. badges images and links:\n.. |tests| image:: https://github.com/audeering/audmetric/workflows/Test/badge.svg\n :target: https://github.com/audeering/audmetric/actions?query=workflow%3ATest\n :alt: Test status\n.. |coverage| image:: https://codecov.io/gh/audeering/audmetric/branch/main/graph/badge.svg?token=wOMLYzFnDO\n :target: https://codecov.io/gh/audeering/audmetric/\n :alt: code coverage\n.. |docs| image:: https://img.shields.io/pypi/v/audmetric?label=docs\n :target: https://audeering.github.io/audmetric/\n :alt: audmetric's documentation\n.. |license| image:: https://img.shields.io/badge/license-MIT-green.svg\n :target: https://github.com/audeering/audmetric/blob/main/LICENSE\n :alt: audmetric's MIT license\n.. |python-versions| image:: https://img.shields.io/pypi/pyversions/audmetric.svg\n :target: https://pypi.org/project/audmetric/\n :alt: audmetric's supported Python versions\n",
"bugtrack_url": null,
"license": null,
"summary": "Evaluate machine-learning models",
"version": "1.2.3",
"project_urls": {
"documentation": "https://audeering.github.io/audmetric/",
"repository": "https://github.com/audeering/audmetric/"
},
"split_keywords": [
"mlops",
" machine learning"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "1c16f2735acd72f49951e5f35ddb3433ba17f8e4546ba918f4b4ad9d1deb82c7",
"md5": "205700bdcdfd4b1a6166789e26d23dcd",
"sha256": "f342330262676b15daea8fe838444620dbc9a24d0ba0d8280d4c315b82539cd9"
},
"downloads": -1,
"filename": "audmetric-1.2.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "205700bdcdfd4b1a6166789e26d23dcd",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 27273,
"upload_time": "2025-11-03T09:13:29",
"upload_time_iso_8601": "2025-11-03T09:13:29.579027Z",
"url": "https://files.pythonhosted.org/packages/1c/16/f2735acd72f49951e5f35ddb3433ba17f8e4546ba918f4b4ad9d1deb82c7/audmetric-1.2.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "bc7aa009f972f3d3023c8f8bd96ea50da0b215a7d99e121f22ed03351a22edac",
"md5": "afc60848e57643de533938c2a349642e",
"sha256": "6652cc742ce08ff942f39e9dda7573a763acd7bba5f8044ffa498759976b3cba"
},
"downloads": -1,
"filename": "audmetric-1.2.3.tar.gz",
"has_sig": false,
"md5_digest": "afc60848e57643de533938c2a349642e",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 28371,
"upload_time": "2025-11-03T09:13:30",
"upload_time_iso_8601": "2025-11-03T09:13:30.791789Z",
"url": "https://files.pythonhosted.org/packages/bc/7a/a009f972f3d3023c8f8bd96ea50da0b215a7d99e121f22ed03351a22edac/audmetric-1.2.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-11-03 09:13:30",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "audeering",
"github_project": "audmetric",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "audmetric"
}