Name | aurora JSON |
Version |
0.5.2
JSON |
| download |
home_page | None |
Summary | Processing Codes for Magnetotelluric Data |
upload_time | 2025-08-03 00:41:30 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.8 |
license | MIT license |
keywords |
aurora
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
.. image:: docs/figures/aurora_logo.png
:width: 900
:alt: AURORA
|
.. image:: https://img.shields.io/pypi/v/aurora.svg
:target: https://pypi.python.org/pypi/aurora
.. image:: https://img.shields.io/conda/v/conda-forge/aurora.svg
:target: https://anaconda.org/conda-forge/aurora
.. image:: https://img.shields.io/pypi/l/aurora.svg
:target: https://pypi.python.org/pypi/aurora
Aurora is an open-source package that robustly estimates single station and remote reference electromagnetic transfer functions (TFs) from magnetotelluric (MT) time series. Aurora is part of an open-source processing workflow that leverages the self-describing data container `MTH5 <https://github.com/kujaku11/mth5>`_, which in turn leverages the general `mt-metadata <https://github.com/kujaku11/mth5>`_ framework to manage metadata. These pre-existing packages simplify the processing by providing managed data structures, transfer functions to be generated with only a few lines of code. The processing depends on two inputs -- a table defining the data to use for TF estimation, and a JSON file specifying the processing parameters, both of which are generated automatically, and can be modified if desired. Output TFs are returned as mt-metadata objects, and can be exported to a variety of common formats for plotting, modeling and inversion.
Key Features
-------------
- Tabular data indexing and management (Pandas dataframes),
- Dictionary-like processing parameters configuration
- Programmatic or manual editing of inputs
- Largely automated workflow
Documentation for the Aurora project can be found at http://simpeg.xyz/aurora/
Installation
---------------
Suggest using PyPi as the default repository to install from
``pip install aurora``
Can use Conda but that is not updated as often
``conda -c conda-forge install aurora``
General Work Flow
-------------------
1. Convert raw time series data to MTH5 format, see `MTH5 Documentation and Examples <https://mth5.readthedocs.io/en/latest/index.html>`_.
2. Understand the time series data and which runs to process for local station `RunSummary`.
3. Choose remote reference station ``KernelDataset``.
4. Create a recipe for how the data will be processed ``Config``.
5. Estimate transfer function `process_mth5` and out put as a ``mt_metadata.transfer_function.core.TF`` object which can output [ EMTFXML | EDI | ZMM | ZSS | ZRR ] files.
Raw data
{
"_id": null,
"home_page": null,
"name": "aurora",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "aurora",
"author": null,
"author_email": "Karl Kappler <karl.kappler@berkeley.edu>",
"download_url": "https://files.pythonhosted.org/packages/f3/fa/5a05b4507b92933e9abc0c7a427f66def60af0583d48c5dce836b77aa1d2/aurora-0.5.2.tar.gz",
"platform": null,
"description": ".. image:: docs/figures/aurora_logo.png\n :width: 900\n :alt: AURORA\n\n|\n\n.. image:: https://img.shields.io/pypi/v/aurora.svg\n :target: https://pypi.python.org/pypi/aurora\n\n.. image:: https://img.shields.io/conda/v/conda-forge/aurora.svg\n :target: https://anaconda.org/conda-forge/aurora\n\n.. image:: https://img.shields.io/pypi/l/aurora.svg\n :target: https://pypi.python.org/pypi/aurora\n\nAurora is an open-source package that robustly estimates single station and remote reference electromagnetic transfer functions (TFs) from magnetotelluric (MT) time series. Aurora is part of an open-source processing workflow that leverages the self-describing data container `MTH5 <https://github.com/kujaku11/mth5>`_, which in turn leverages the general `mt-metadata <https://github.com/kujaku11/mth5>`_ framework to manage metadata. These pre-existing packages simplify the processing by providing managed data structures, transfer functions to be generated with only a few lines of code. The processing depends on two inputs -- a table defining the data to use for TF estimation, and a JSON file specifying the processing parameters, both of which are generated automatically, and can be modified if desired. Output TFs are returned as mt-metadata objects, and can be exported to a variety of common formats for plotting, modeling and inversion. \n\nKey Features\n-------------\n\n- Tabular data indexing and management (Pandas dataframes), \n- Dictionary-like processing parameters configuration\n- Programmatic or manual editing of inputs\n- Largely automated workflow \n\nDocumentation for the Aurora project can be found at http://simpeg.xyz/aurora/\n\nInstallation\n---------------\n\nSuggest using PyPi as the default repository to install from\n\n``pip install aurora``\n\nCan use Conda but that is not updated as often\n\n``conda -c conda-forge install aurora``\n\nGeneral Work Flow\n-------------------\n\n1. Convert raw time series data to MTH5 format, see `MTH5 Documentation and Examples <https://mth5.readthedocs.io/en/latest/index.html>`_.\n2. Understand the time series data and which runs to process for local station `RunSummary`.\n3. Choose remote reference station ``KernelDataset``.\n4. Create a recipe for how the data will be processed ``Config``.\n5. Estimate transfer function `process_mth5` and out put as a ``mt_metadata.transfer_function.core.TF`` object which can output [ EMTFXML | EDI | ZMM | ZSS | ZRR ] files. \n\n\n",
"bugtrack_url": null,
"license": "MIT license",
"summary": "Processing Codes for Magnetotelluric Data",
"version": "0.5.2",
"project_urls": {
"Homepage": "https://github.com/simpeg/aurora"
},
"split_keywords": [
"aurora"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "53db8eeff273c6d2241e60d74c693d27876048858397d17c06a44d110fad3f98",
"md5": "d1377727d0a739d1cf6fabe266c89994",
"sha256": "a5c1ab1888b5da6f42d1a271eabe809311856b3765dcbc64ae05062da8608c12"
},
"downloads": -1,
"filename": "aurora-0.5.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "d1377727d0a739d1cf6fabe266c89994",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 157153,
"upload_time": "2025-08-03T00:41:29",
"upload_time_iso_8601": "2025-08-03T00:41:29.045475Z",
"url": "https://files.pythonhosted.org/packages/53/db/8eeff273c6d2241e60d74c693d27876048858397d17c06a44d110fad3f98/aurora-0.5.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "f3fa5a05b4507b92933e9abc0c7a427f66def60af0583d48c5dce836b77aa1d2",
"md5": "952c3043ac203020c1d0cd70fe1fcb0d",
"sha256": "9f78b46610653c96a2bf2266d3f417123ba1c7bd924b66b89be7ed5740a8f092"
},
"downloads": -1,
"filename": "aurora-0.5.2.tar.gz",
"has_sig": false,
"md5_digest": "952c3043ac203020c1d0cd70fe1fcb0d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 327947,
"upload_time": "2025-08-03T00:41:30",
"upload_time_iso_8601": "2025-08-03T00:41:30.798580Z",
"url": "https://files.pythonhosted.org/packages/f3/fa/5a05b4507b92933e9abc0c7a427f66def60af0583d48c5dce836b77aa1d2/aurora-0.5.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-03 00:41:30",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "simpeg",
"github_project": "aurora",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "aurora"
}