aurora


Nameaurora JSON
Version 0.5.2 PyPI version JSON
download
home_pageNone
SummaryProcessing Codes for Magnetotelluric Data
upload_time2025-08-03 00:41:30
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseMIT license
keywords aurora
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            .. image:: docs/figures/aurora_logo.png
   :width: 900
   :alt: AURORA

|

.. image:: https://img.shields.io/pypi/v/aurora.svg
    :target: https://pypi.python.org/pypi/aurora

.. image:: https://img.shields.io/conda/v/conda-forge/aurora.svg
    :target: https://anaconda.org/conda-forge/aurora

.. image:: https://img.shields.io/pypi/l/aurora.svg
    :target: https://pypi.python.org/pypi/aurora

Aurora is an open-source package that robustly estimates single station and remote reference electromagnetic transfer functions (TFs) from magnetotelluric (MT) time series.  Aurora is part of an open-source processing workflow that leverages the self-describing data container `MTH5 <https://github.com/kujaku11/mth5>`_, which in turn leverages the general `mt-metadata <https://github.com/kujaku11/mth5>`_ framework to manage metadata.  These pre-existing packages simplify the processing by providing managed data structures, transfer functions to be generated with only a few lines of code.  The processing depends on two inputs -- a table defining the data to use for TF estimation, and a JSON file specifying the processing parameters, both of which are generated automatically, and can be modified if desired.  Output TFs are returned as mt-metadata objects, and can be exported to a variety of common formats for plotting, modeling and inversion.  

Key Features
-------------

- Tabular data indexing and management (Pandas dataframes), 
- Dictionary-like processing parameters configuration
- Programmatic or manual editing of inputs
- Largely automated workflow 

Documentation for the Aurora project can be found at http://simpeg.xyz/aurora/

Installation
---------------

Suggest using PyPi as the default repository to install from

``pip install aurora``

Can use Conda but that is not updated as often

``conda -c conda-forge install aurora``

General Work Flow
-------------------

1. Convert raw time series data to MTH5 format, see `MTH5 Documentation and Examples <https://mth5.readthedocs.io/en/latest/index.html>`_.
2. Understand the time series data and which runs to process for local station `RunSummary`.
3. Choose remote reference station ``KernelDataset``.
4. Create a recipe for how the data will be processed ``Config``.
5. Estimate transfer function `process_mth5` and out put as a ``mt_metadata.transfer_function.core.TF`` object which can output [ EMTFXML | EDI | ZMM | ZSS | ZRR ] files. 



            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "aurora",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "aurora",
    "author": null,
    "author_email": "Karl Kappler <karl.kappler@berkeley.edu>",
    "download_url": "https://files.pythonhosted.org/packages/f3/fa/5a05b4507b92933e9abc0c7a427f66def60af0583d48c5dce836b77aa1d2/aurora-0.5.2.tar.gz",
    "platform": null,
    "description": ".. image:: docs/figures/aurora_logo.png\n   :width: 900\n   :alt: AURORA\n\n|\n\n.. image:: https://img.shields.io/pypi/v/aurora.svg\n    :target: https://pypi.python.org/pypi/aurora\n\n.. image:: https://img.shields.io/conda/v/conda-forge/aurora.svg\n    :target: https://anaconda.org/conda-forge/aurora\n\n.. image:: https://img.shields.io/pypi/l/aurora.svg\n    :target: https://pypi.python.org/pypi/aurora\n\nAurora is an open-source package that robustly estimates single station and remote reference electromagnetic transfer functions (TFs) from magnetotelluric (MT) time series.  Aurora is part of an open-source processing workflow that leverages the self-describing data container `MTH5 <https://github.com/kujaku11/mth5>`_, which in turn leverages the general `mt-metadata <https://github.com/kujaku11/mth5>`_ framework to manage metadata.  These pre-existing packages simplify the processing by providing managed data structures, transfer functions to be generated with only a few lines of code.  The processing depends on two inputs -- a table defining the data to use for TF estimation, and a JSON file specifying the processing parameters, both of which are generated automatically, and can be modified if desired.  Output TFs are returned as mt-metadata objects, and can be exported to a variety of common formats for plotting, modeling and inversion.  \n\nKey Features\n-------------\n\n- Tabular data indexing and management (Pandas dataframes), \n- Dictionary-like processing parameters configuration\n- Programmatic or manual editing of inputs\n- Largely automated workflow \n\nDocumentation for the Aurora project can be found at http://simpeg.xyz/aurora/\n\nInstallation\n---------------\n\nSuggest using PyPi as the default repository to install from\n\n``pip install aurora``\n\nCan use Conda but that is not updated as often\n\n``conda -c conda-forge install aurora``\n\nGeneral Work Flow\n-------------------\n\n1. Convert raw time series data to MTH5 format, see `MTH5 Documentation and Examples <https://mth5.readthedocs.io/en/latest/index.html>`_.\n2. Understand the time series data and which runs to process for local station `RunSummary`.\n3. Choose remote reference station ``KernelDataset``.\n4. Create a recipe for how the data will be processed ``Config``.\n5. Estimate transfer function `process_mth5` and out put as a ``mt_metadata.transfer_function.core.TF`` object which can output [ EMTFXML | EDI | ZMM | ZSS | ZRR ] files. \n\n\n",
    "bugtrack_url": null,
    "license": "MIT license",
    "summary": "Processing Codes for Magnetotelluric Data",
    "version": "0.5.2",
    "project_urls": {
        "Homepage": "https://github.com/simpeg/aurora"
    },
    "split_keywords": [
        "aurora"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "53db8eeff273c6d2241e60d74c693d27876048858397d17c06a44d110fad3f98",
                "md5": "d1377727d0a739d1cf6fabe266c89994",
                "sha256": "a5c1ab1888b5da6f42d1a271eabe809311856b3765dcbc64ae05062da8608c12"
            },
            "downloads": -1,
            "filename": "aurora-0.5.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d1377727d0a739d1cf6fabe266c89994",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 157153,
            "upload_time": "2025-08-03T00:41:29",
            "upload_time_iso_8601": "2025-08-03T00:41:29.045475Z",
            "url": "https://files.pythonhosted.org/packages/53/db/8eeff273c6d2241e60d74c693d27876048858397d17c06a44d110fad3f98/aurora-0.5.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "f3fa5a05b4507b92933e9abc0c7a427f66def60af0583d48c5dce836b77aa1d2",
                "md5": "952c3043ac203020c1d0cd70fe1fcb0d",
                "sha256": "9f78b46610653c96a2bf2266d3f417123ba1c7bd924b66b89be7ed5740a8f092"
            },
            "downloads": -1,
            "filename": "aurora-0.5.2.tar.gz",
            "has_sig": false,
            "md5_digest": "952c3043ac203020c1d0cd70fe1fcb0d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 327947,
            "upload_time": "2025-08-03T00:41:30",
            "upload_time_iso_8601": "2025-08-03T00:41:30.798580Z",
            "url": "https://files.pythonhosted.org/packages/f3/fa/5a05b4507b92933e9abc0c7a427f66def60af0583d48c5dce836b77aa1d2/aurora-0.5.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-03 00:41:30",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "simpeg",
    "github_project": "aurora",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "aurora"
}
        
Elapsed time: 4.94221s