.. image:: docs/figures/aurora_logo.png
:width: 900
:alt: AURORA
|
.. image:: https://img.shields.io/pypi/v/aurora.svg
:target: https://pypi.python.org/pypi/aurora
.. image:: https://img.shields.io/conda/v/conda-forge/aurora.svg
:target: https://anaconda.org/conda-forge/aurora
.. image:: https://img.shields.io/pypi/l/aurora.svg
:target: https://pypi.python.org/pypi/aurora
Aurora is an open-source package that robustly estimates single station and remote reference electromagnetic transfer functions (TFs) from magnetotelluric (MT) time series. Aurora is part of an open-source processing workflow that leverages the self-describing data container `MTH5 <https://github.com/kujaku11/mth5>`_, which in turn leverages the general `mt-metadata <https://github.com/kujaku11/mth5>`_ framework to manage metadata. These pre-existing packages simplify the processing by providing managed data structures, transfer functions to be generated with only a few lines of code. The processing depends on two inputs -- a table defining the data to use for TF estimation, and a JSON file specifying the processing parameters, both of which are generated automatically, and can be modified if desired. Output TFs are returned as mt-metadata objects, and can be exported to a variety of common formats for plotting, modeling and inversion.
Key Features
-------------
- Tabular data indexing and management (Pandas dataframes),
- Dictionary-like processing parameters configuration
- Programmatic or manual editing of inputs
- Largely automated workflow
Documentation for the Aurora project can be found at http://simpeg.xyz/aurora/
Installation
---------------
Suggest using PyPi as the default repository to install from
``pip install aurora``
Can use Conda but that is not updated as often
``conda -c conda-forge install aurora``
General Work Flow
-------------------
1. Convert raw time series data to MTH5 format, see `MTH5 Documentation and Examples <https://mth5.readthedocs.io/en/latest/index.html>`_.
2. Understand the time series data and which runs to process for local station `RunSummary`.
3. Choose remote reference station ``KernelDataset``.
4. Create a recipe for how the data will be processed ``Config``.
5. Estimate transfer function `process_mth5` and out put as a ``mt_metadata.transfer_function.core.TF`` object which can output [ EMTFXML | EDI | ZMM | ZSS | ZRR ] files.
Raw data
{
"_id": null,
"home_page": "https://github.com/simpeg/aurora",
"name": "aurora",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "aurora",
"author": "Karl Kappler",
"author_email": "karl.kappler@berkeley.edu",
"download_url": "https://files.pythonhosted.org/packages/19/d2/8a362bcbfa805822117b9b45c8538de7da4d2b3da6b4c8fc69acbc3dcfff/aurora-0.4.2.tar.gz",
"platform": null,
"description": ".. image:: docs/figures/aurora_logo.png\n :width: 900\n :alt: AURORA\n\n|\n\n.. image:: https://img.shields.io/pypi/v/aurora.svg\n :target: https://pypi.python.org/pypi/aurora\n\n.. image:: https://img.shields.io/conda/v/conda-forge/aurora.svg\n :target: https://anaconda.org/conda-forge/aurora\n\n.. image:: https://img.shields.io/pypi/l/aurora.svg\n :target: https://pypi.python.org/pypi/aurora\n\nAurora is an open-source package that robustly estimates single station and remote reference electromagnetic transfer functions (TFs) from magnetotelluric (MT) time series. Aurora is part of an open-source processing workflow that leverages the self-describing data container `MTH5 <https://github.com/kujaku11/mth5>`_, which in turn leverages the general `mt-metadata <https://github.com/kujaku11/mth5>`_ framework to manage metadata. These pre-existing packages simplify the processing by providing managed data structures, transfer functions to be generated with only a few lines of code. The processing depends on two inputs -- a table defining the data to use for TF estimation, and a JSON file specifying the processing parameters, both of which are generated automatically, and can be modified if desired. Output TFs are returned as mt-metadata objects, and can be exported to a variety of common formats for plotting, modeling and inversion. \n\nKey Features\n-------------\n\n- Tabular data indexing and management (Pandas dataframes), \n- Dictionary-like processing parameters configuration\n- Programmatic or manual editing of inputs\n- Largely automated workflow \n\nDocumentation for the Aurora project can be found at http://simpeg.xyz/aurora/\n\nInstallation\n---------------\n\nSuggest using PyPi as the default repository to install from\n\n``pip install aurora``\n\nCan use Conda but that is not updated as often\n\n``conda -c conda-forge install aurora``\n\nGeneral Work Flow\n-------------------\n\n1. Convert raw time series data to MTH5 format, see `MTH5 Documentation and Examples <https://mth5.readthedocs.io/en/latest/index.html>`_.\n2. Understand the time series data and which runs to process for local station `RunSummary`.\n3. Choose remote reference station ``KernelDataset``.\n4. Create a recipe for how the data will be processed ``Config``.\n5. Estimate transfer function `process_mth5` and out put as a ``mt_metadata.transfer_function.core.TF`` object which can output [ EMTFXML | EDI | ZMM | ZSS | ZRR ] files. \n\n\n",
"bugtrack_url": null,
"license": "MIT license",
"summary": "Processing Codes for Magnetotelluric Data",
"version": "0.4.2",
"project_urls": {
"Homepage": "https://github.com/simpeg/aurora"
},
"split_keywords": [
"aurora"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "8ba2864c58d1e2e10f70a92526c450c68875d70b2a65e1946a0a58b2d709e47b",
"md5": "b3e10fcd62d5d5a3cece48bc50fb7269",
"sha256": "0271c6528a00c0ae6ae029fa2e7090d26cbe4d6393a7e00baf5dee8523863f36"
},
"downloads": -1,
"filename": "aurora-0.4.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "b3e10fcd62d5d5a3cece48bc50fb7269",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 150112,
"upload_time": "2024-10-15T02:20:49",
"upload_time_iso_8601": "2024-10-15T02:20:49.473434Z",
"url": "https://files.pythonhosted.org/packages/8b/a2/864c58d1e2e10f70a92526c450c68875d70b2a65e1946a0a58b2d709e47b/aurora-0.4.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "19d28a362bcbfa805822117b9b45c8538de7da4d2b3da6b4c8fc69acbc3dcfff",
"md5": "3244d232705016d975df2e3e6ab0ebc9",
"sha256": "503bb096373e3b09ffea71137143ffc80268a31ce350a980451fb062f2c441f4"
},
"downloads": -1,
"filename": "aurora-0.4.2.tar.gz",
"has_sig": false,
"md5_digest": "3244d232705016d975df2e3e6ab0ebc9",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 316740,
"upload_time": "2024-10-15T02:20:51",
"upload_time_iso_8601": "2024-10-15T02:20:51.039597Z",
"url": "https://files.pythonhosted.org/packages/19/d2/8a362bcbfa805822117b9b45c8538de7da4d2b3da6b4c8fc69acbc3dcfff/aurora-0.4.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-10-15 02:20:51",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "simpeg",
"github_project": "aurora",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "aurora"
}