aurora-dsql-sqlalchemy


Nameaurora-dsql-sqlalchemy JSON
Version 1.0.2 PyPI version JSON
download
home_pageNone
SummaryAmazon Aurora DSQL dialect for SQLAlchemy
upload_time2025-07-22 20:16:19
maintainerNone
docs_urlNone
authorAmazon Web Services
requires_python>=3.10
licenseApache License 2.0
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Amazon Aurora DSQL dialect for SQLAlchemy

<a href="https://pypi.org/project/aurora-dsql-sqlalchemy"><img alt="PyPI - Version" src="https://img.shields.io/pypi/v/aurora-dsql-sqlalchemy?style=for-the-badge"></a>

## Introduction

The Aurora DSQL dialect for SQLAlchemy provides integration between SQLAlchemy ORM and Aurora DSQL. This dialect enables
Python applications to leverage SQLAlchemy's powerful object-relational mapping capabilities while taking advantage of
Aurora DSQL's distributed architecture and high availability.

## Sample Application

There is an included sample application in [examples/pet-clinic-app](https://github.com/awslabs/aurora-dsql-sqlalchemy/tree/main/examples/pet-clinic-app) that shows how to use Aurora DSQL
with SQLAlchemy. To run the included example please refer to the [sample README](https://github.com/awslabs/aurora-dsql-sqlalchemy/tree/main/examples/pet-clinic-app#readme).

## Prerequisites

- Python 3.10 or higher
- SQLAlchemy 2.0.0 or higher
- One of the following drivers:
  - psycopg 3.2.0 or higher
  - psycopg2 2.9.0 or higher

## Installation

Install the packages using the commands below:

```bash
pip install aurora-dsql-sqlalchemy

# driver installation (in case you opt for psycopg)
# DO NOT use pip install psycopg-binary
pip install "psycopg[binary]"

# driver installation (in case you opt for psycopg2)
pip install psycopg2-binary
```

## Dialect Configuration

After installation, you can connect to an Aurora DSQL cluster using SQLAlchemy's `create_engine`:

The connection parameter `auroradsql+psycopg` specifies to use the `auroradsql` dialect with the driver `psycopg` (psycopg3).
To use the driver `psycopg2`, change the connection parameter to `auroradsql+psycopg2`.

```python
from sqlalchemy import create_engine
from sqlalchemy.engine.url import URL

url = URL.create(
    "auroradsql+psycopg",
    username=<CLUSTER_USER>,
    host=<CLUSTER_ENDPOINT>,
    database='postgres',
)

engine = create_engine(
    url,
    connect_args={"sslmode": "verify-full", "sslrootcert": "<ROOT_CERT_PATH>"},
    pool_size=5,
    max_overflow=10
)
```

**Note:** Each connection has a maximum duration limit. See the `Maximum connection duration` time limit in the [Cluster quotas and database limits in Amazon Aurora DSQL](https://docs.aws.amazon.com/aurora-dsql/latest/userguide/CHAP_quotas.html) page.

## Best Practices

### Primary Key Generation

SQLAlchemy applications connecting to Aurora DSQL should use UUID for the primary key column since auto-incrementing integer keys (sequences or serial) are not supported in DSQL. The following column definition can be used to define an UUID primary key column.

```python
Column(
    "id",
    UUID(as_uuid=True),
    primary_key=True,
    default=text('gen_random_uuid()')
)
```

`gen_random_uuid()` returns an UUID version 4 as the default value.

## Dialect Features and Limitations

- **Column Metadata**: The dialect fixes an issue related to `"datatype json not supported"` when calling SQLAlchemy's metadata() API.
- **Foreign Keys**: Aurora DSQL does not support foreign key constraints. The dialect disables these constraints, but be aware that referential integrity must be maintained at the application level.
- **Index Creation**: Aurora DSQL does not support `CREATE INDEX` or `CREATE UNIQUE INDEX` commands. The dialect instead uses `CREATE INDEX ASYNC` and `CREATE UNIQUE INDEX ASYNC` commands. See the [Asynchronous indexes in Aurora DSQL](https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-create-index-async.html) page for more information.

  The following parameters are used for customizing index creation

  - `auroradsql_include` - specifies which columns to includes in an index by using the `INCLUDE` clause:

    ```python
    Index(
        "include_index",
        table.c.id,
        auroradsql_include=['name', 'email']
    )
    ```

    Generated SQL output:

    ```sql
    CREATE INDEX ASYNC include_index ON table (id) INCLUDE (name, email)
    ```

  - `auroradsql_nulls_not_distinct` - controls how `NULL` values are treated in unique indexes:

    ```python
    Index(
        "idx_name",
        table.c.column,
        unique=True,
        auroradsql_nulls_not_distinct=True
    )
    ```

    Generated SQL output:

    ```sql
    CREATE UNIQUE INDEX idx_name ON table (column) NULLS NOT DISTINCT
    ```

- **Index Interface Limitation**: `NULLS FIRST | LAST` - SQLalchemy's Index() interface does not have a way to pass in the sort order of null and non-null columns. (Default: `NULLS LAST`). If `NULLS FIRST` is required, please refer to the syntax as specified in [Asynchronous indexes in Aurora DSQL](https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-create-index-async.html) and execute the corresponding SQL query directly in SQLAlchemy.
- **Psycopg (psycopg3) support**: When connecting to DSQL using the default postgresql dialect with psycopg, an unsupported `SAVEPOINT` error occurs. The DSQL dialect addresses this issue by disabling the `SAVEPOINT` during connection.

## Developer instructions

Instructions on how to build and test the dialect are available in the [Developer Instructions](https://github.com/awslabs/aurora-dsql-sqlalchemy/tree/main/aurora_dsql_sqlalchemy#readme).

## Security

See [CONTRIBUTING](https://github.com/awslabs/aurora-dsql-sqlalchemy/blob/main/CONTRIBUTING.md#security-issue-notifications) for more information.

## License

This project is licensed under the Apache-2.0 License.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "aurora-dsql-sqlalchemy",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": null,
    "author": "Amazon Web Services",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/9f/36/d8065b6d3fa329a323cf05d67ede899719490998a5abf820bca66b8f6cbb/aurora_dsql_sqlalchemy-1.0.2.tar.gz",
    "platform": null,
    "description": "# Amazon Aurora DSQL dialect for SQLAlchemy\n\n<a href=\"https://pypi.org/project/aurora-dsql-sqlalchemy\"><img alt=\"PyPI - Version\" src=\"https://img.shields.io/pypi/v/aurora-dsql-sqlalchemy?style=for-the-badge\"></a>\n\n## Introduction\n\nThe Aurora DSQL dialect for SQLAlchemy provides integration between SQLAlchemy ORM and Aurora DSQL. This dialect enables\nPython applications to leverage SQLAlchemy's powerful object-relational mapping capabilities while taking advantage of\nAurora DSQL's distributed architecture and high availability.\n\n## Sample Application\n\nThere is an included sample application in [examples/pet-clinic-app](https://github.com/awslabs/aurora-dsql-sqlalchemy/tree/main/examples/pet-clinic-app) that shows how to use Aurora DSQL\nwith SQLAlchemy. To run the included example please refer to the [sample README](https://github.com/awslabs/aurora-dsql-sqlalchemy/tree/main/examples/pet-clinic-app#readme).\n\n## Prerequisites\n\n- Python 3.10 or higher\n- SQLAlchemy 2.0.0 or higher\n- One of the following drivers:\n  - psycopg 3.2.0 or higher\n  - psycopg2 2.9.0 or higher\n\n## Installation\n\nInstall the packages using the commands below:\n\n```bash\npip install aurora-dsql-sqlalchemy\n\n# driver installation (in case you opt for psycopg)\n# DO NOT use pip install psycopg-binary\npip install \"psycopg[binary]\"\n\n# driver installation (in case you opt for psycopg2)\npip install psycopg2-binary\n```\n\n## Dialect Configuration\n\nAfter installation, you can connect to an Aurora DSQL cluster using SQLAlchemy's `create_engine`:\n\nThe connection parameter `auroradsql+psycopg` specifies to use the `auroradsql` dialect with the driver `psycopg` (psycopg3).\nTo use the driver `psycopg2`, change the connection parameter to `auroradsql+psycopg2`.\n\n```python\nfrom sqlalchemy import create_engine\nfrom sqlalchemy.engine.url import URL\n\nurl = URL.create(\n    \"auroradsql+psycopg\",\n    username=<CLUSTER_USER>,\n    host=<CLUSTER_ENDPOINT>,\n    database='postgres',\n)\n\nengine = create_engine(\n    url,\n    connect_args={\"sslmode\": \"verify-full\", \"sslrootcert\": \"<ROOT_CERT_PATH>\"},\n    pool_size=5,\n    max_overflow=10\n)\n```\n\n**Note:** Each connection has a maximum duration limit. See the `Maximum connection duration` time limit in the [Cluster quotas and database limits in Amazon Aurora DSQL](https://docs.aws.amazon.com/aurora-dsql/latest/userguide/CHAP_quotas.html) page.\n\n## Best Practices\n\n### Primary Key Generation\n\nSQLAlchemy applications connecting to Aurora DSQL should use UUID for the primary key column since auto-incrementing integer keys (sequences or serial) are not supported in DSQL. The following column definition can be used to define an UUID primary key column.\n\n```python\nColumn(\n    \"id\",\n    UUID(as_uuid=True),\n    primary_key=True,\n    default=text('gen_random_uuid()')\n)\n```\n\n`gen_random_uuid()` returns an UUID version 4 as the default value.\n\n## Dialect Features and Limitations\n\n- **Column Metadata**: The dialect fixes an issue related to `\"datatype json not supported\"` when calling SQLAlchemy's metadata() API.\n- **Foreign Keys**: Aurora DSQL does not support foreign key constraints. The dialect disables these constraints, but be aware that referential integrity must be maintained at the application level.\n- **Index Creation**: Aurora DSQL does not support `CREATE INDEX` or `CREATE UNIQUE INDEX` commands. The dialect instead uses `CREATE INDEX ASYNC` and `CREATE UNIQUE INDEX ASYNC` commands. See the [Asynchronous indexes in Aurora DSQL](https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-create-index-async.html) page for more information.\n\n  The following parameters are used for customizing index creation\n\n  - `auroradsql_include` - specifies which columns to includes in an index by using the `INCLUDE` clause:\n\n    ```python\n    Index(\n        \"include_index\",\n        table.c.id,\n        auroradsql_include=['name', 'email']\n    )\n    ```\n\n    Generated SQL output:\n\n    ```sql\n    CREATE INDEX ASYNC include_index ON table (id) INCLUDE (name, email)\n    ```\n\n  - `auroradsql_nulls_not_distinct` - controls how `NULL` values are treated in unique indexes:\n\n    ```python\n    Index(\n        \"idx_name\",\n        table.c.column,\n        unique=True,\n        auroradsql_nulls_not_distinct=True\n    )\n    ```\n\n    Generated SQL output:\n\n    ```sql\n    CREATE UNIQUE INDEX idx_name ON table (column) NULLS NOT DISTINCT\n    ```\n\n- **Index Interface Limitation**: `NULLS FIRST | LAST` - SQLalchemy's Index() interface does not have a way to pass in the sort order of null and non-null columns. (Default: `NULLS LAST`). If `NULLS FIRST` is required, please refer to the syntax as specified in [Asynchronous indexes in Aurora DSQL](https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-create-index-async.html) and execute the corresponding SQL query directly in SQLAlchemy.\n- **Psycopg (psycopg3) support**: When connecting to DSQL using the default postgresql dialect with psycopg, an unsupported `SAVEPOINT` error occurs. The DSQL dialect addresses this issue by disabling the `SAVEPOINT` during connection.\n\n## Developer instructions\n\nInstructions on how to build and test the dialect are available in the [Developer Instructions](https://github.com/awslabs/aurora-dsql-sqlalchemy/tree/main/aurora_dsql_sqlalchemy#readme).\n\n## Security\n\nSee [CONTRIBUTING](https://github.com/awslabs/aurora-dsql-sqlalchemy/blob/main/CONTRIBUTING.md#security-issue-notifications) for more information.\n\n## License\n\nThis project is licensed under the Apache-2.0 License.\n",
    "bugtrack_url": null,
    "license": "Apache License 2.0",
    "summary": "Amazon Aurora DSQL dialect for SQLAlchemy",
    "version": "1.0.2",
    "project_urls": {
        "Repository": "https://github.com/awslabs/aurora-dsql-sqlalchemy"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "c6b06489fdd72517f21d56fd5563d829e39bf3f0a72648d5e209d4dbeb0e6184",
                "md5": "a2d738da4775b9ff638f3fb9fb1eb789",
                "sha256": "b1cdd3b78d7ce1ed02757abc33b90fcfb213ef2baf1e0ea0d80732899495d411"
            },
            "downloads": -1,
            "filename": "aurora_dsql_sqlalchemy-1.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "a2d738da4775b9ff638f3fb9fb1eb789",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 11374,
            "upload_time": "2025-07-22T20:16:18",
            "upload_time_iso_8601": "2025-07-22T20:16:18.762070Z",
            "url": "https://files.pythonhosted.org/packages/c6/b0/6489fdd72517f21d56fd5563d829e39bf3f0a72648d5e209d4dbeb0e6184/aurora_dsql_sqlalchemy-1.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "9f36d8065b6d3fa329a323cf05d67ede899719490998a5abf820bca66b8f6cbb",
                "md5": "74741611a1fee825b6960620a78559a3",
                "sha256": "6b00983f49ecb55f15282ad4809c65c5705303d4c44880450729c8d5460d773c"
            },
            "downloads": -1,
            "filename": "aurora_dsql_sqlalchemy-1.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "74741611a1fee825b6960620a78559a3",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 12374,
            "upload_time": "2025-07-22T20:16:19",
            "upload_time_iso_8601": "2025-07-22T20:16:19.824844Z",
            "url": "https://files.pythonhosted.org/packages/9f/36/d8065b6d3fa329a323cf05d67ede899719490998a5abf820bca66b8f6cbb/aurora_dsql_sqlalchemy-1.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-22 20:16:19",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "awslabs",
    "github_project": "aurora-dsql-sqlalchemy",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "aurora-dsql-sqlalchemy"
}
        
Elapsed time: 0.82885s