Name | autoOD JSON |
Version |
1.0.23
JSON |
| download |
home_page | |
Summary | Module to automate object detection process. |
upload_time | 2023-02-02 17:43:59 |
maintainer | |
docs_url | None |
author | Elina Chertova |
requires_python | |
license | |
keywords |
objectdetection
automl
autood
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# autoOD
## Docker
## Augmentation
Available augmentations' methods: [link](docs/augmentation/Документация_по_аугментации.pdf)
## Tutorial
### Установка пакета
Ссылка на проект на pypi: `https://pypi.org/project/autoOD/`.
```angular2html
pip install autoOD
```
## Конфигурация проекта
В корне рабочей директории необходимо создать файл `object_detection.ini`. Пример:
```angular2html
[Environment]
; required fields to change: dataset_dir, path_to_work_dir, image_folder
dataset_dir=/Users/elinachertova/PycharmProjects/autoOD/all_images_data
path_to_work_dir=/Users/elinachertova/PycharmProjects/autoOD/
image_folder=all_images_data
test_folder=test
train_folder=train
all_data_folder=all_data
annotations_folder=annotations
result_folder=result
models_folder=models
additional_folder=additional
[Dataset]
extension=jpg
[Dataset.Preparation]
train_set_percent=0.8
is_shuffle=True
[Training.Params]
; If is_custom_settings == False, the params will be selected automatically.
is_custom_settings=True
; is_custom_settings==False
model_id=16
batch_size=16
num_steps=1000
;
[Training.EarlyStopping]
early_stopping=True
patience=5
min_delta=0.001
save_step=3
;
[Training.Overfitting]
is_prevent_overfitting=True
use_dropout=True
use_score_threshold=True
[Training.Loss]
is_loss_function=False
classification_weight=1.0
localization_weight=1.0
[Training.Augmentation]
; If is_auto_augmentation == True, AutoAu
is_auto_augmentation=False
; Available values: v0, v1, v2, v3. v0 preferable
policy=v0
; If is_augmentation == False, the section will be skipped.
is_augmentation=True
normalize_image=False
horizontal_flip=True
probability_horizontal_flip=0.2
vertical_flip=True
probability_vertical_flip=0.5
rotation90=False
probability_rotation90=0.3
pixel_value_scale=False
entire_rgb_to_grey=True
probability_entire_rgb_to_grey=0.07
adjust_brightness=False
max_delta_adjust_brightness=0.2
adjust_contrast=True
min_delta_adjust_contrast=0.8
max_delta_adjust_contrast=1.25
adjust_hue=False
max_delta_adjust_hue=0.02
adjust_saturation=False
min_delta_adjust_saturation=0.8
max_delta_adjust_saturation=1.25
distort_color=False
color_ordering=1
crop_image=False
min_object_covered_crop_image=1.0
min_aspect_ratio_crop_image=0.75
max_aspect_ratio_crop_image=1.33
min_area_crop_image=0.1
max_area_crop_image=1.0
overlap_thresh_crop_image=0.3
clip_boxes_crop_image=True
random_coef_crop_image=0.0
pad_image=False
crop_pad_image=False
crop_to_aspect_ratio=False
aspect_ratio_crop_to_aspect_ratio=1.0
overlap_thresh_crop_to_aspect_ratio=0.3
clip_boxes_crop_to_aspect_ratio=True
black_patches=True
max_black_patches=10
probability_black_patches=0.2
size_to_image_ratio=0.1
rgb_to_grey=False
drop_label_probabilistically=False
label=1
drop_probability=1.0
jpeg_quality=False
random_coef_jpeg_quality=0.0
min_jpeg_quality=0
max_jpeg_quality=100
patch_gaussian=False
random_coef_patch_gaussian=0.0
min_patch_size=1
max_patch_size=250
min_gaussian_stddev=0.0
max_gaussian_stddev=1.0
```
Необходимо заменить конфигурацию из раздела Environment на пользовательскую. Остальные параметры настраиваются по желанию.
Raw data
{
"_id": null,
"home_page": "",
"name": "autoOD",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "ObjectDetection,autoML,autoOD",
"author": "Elina Chertova",
"author_email": "elas.2015@mail.ru",
"download_url": "https://files.pythonhosted.org/packages/fd/89/37ce588956718b165663932344b89bbfd5e30d041fa0cc326e6a05d1ff55/autoOD-1.0.23.tar.gz",
"platform": null,
"description": "# autoOD\n\n## Docker\n\n## Augmentation\nAvailable augmentations' methods: [link](docs/augmentation/\u0414\u043e\u043a\u0443\u043c\u0435\u043d\u0442\u0430\u0446\u0438\u044f_\u043f\u043e_\u0430\u0443\u0433\u043c\u0435\u043d\u0442\u0430\u0446\u0438\u0438.pdf)\n\n## Tutorial\n### \u0423\u0441\u0442\u0430\u043d\u043e\u0432\u043a\u0430 \u043f\u0430\u043a\u0435\u0442\u0430\n\u0421\u0441\u044b\u043b\u043a\u0430 \u043d\u0430 \u043f\u0440\u043e\u0435\u043a\u0442 \u043d\u0430 pypi: `https://pypi.org/project/autoOD/`.\n```angular2html\npip install autoOD\n```\n\n## \u041a\u043e\u043d\u0444\u0438\u0433\u0443\u0440\u0430\u0446\u0438\u044f \u043f\u0440\u043e\u0435\u043a\u0442\u0430\n\u0412 \u043a\u043e\u0440\u043d\u0435 \u0440\u0430\u0431\u043e\u0447\u0435\u0439 \u0434\u0438\u0440\u0435\u043a\u0442\u043e\u0440\u0438\u0438 \u043d\u0435\u043e\u0431\u0445\u043e\u0434\u0438\u043c\u043e \u0441\u043e\u0437\u0434\u0430\u0442\u044c \u0444\u0430\u0439\u043b `object_detection.ini`. \u041f\u0440\u0438\u043c\u0435\u0440:\n```angular2html\n[Environment]\n; required fields to change: dataset_dir, path_to_work_dir, image_folder\ndataset_dir=/Users/elinachertova/PycharmProjects/autoOD/all_images_data\npath_to_work_dir=/Users/elinachertova/PycharmProjects/autoOD/\nimage_folder=all_images_data\ntest_folder=test\ntrain_folder=train\nall_data_folder=all_data\nannotations_folder=annotations\nresult_folder=result\nmodels_folder=models\nadditional_folder=additional\n\n[Dataset]\nextension=jpg\n\n[Dataset.Preparation]\ntrain_set_percent=0.8\nis_shuffle=True\n\n[Training.Params]\n; If is_custom_settings == False, the params will be selected automatically.\nis_custom_settings=True\n; is_custom_settings==False\nmodel_id=16\nbatch_size=16\nnum_steps=1000\n\n;\n[Training.EarlyStopping]\nearly_stopping=True\npatience=5\nmin_delta=0.001\nsave_step=3\n;\n\n[Training.Overfitting]\nis_prevent_overfitting=True\nuse_dropout=True\nuse_score_threshold=True\n\n[Training.Loss]\nis_loss_function=False\nclassification_weight=1.0\nlocalization_weight=1.0\n\n[Training.Augmentation]\n; If is_auto_augmentation == True, AutoAu\nis_auto_augmentation=False\n; Available values: v0, v1, v2, v3. v0 preferable\npolicy=v0\n\n\n; If is_augmentation == False, the section will be skipped.\nis_augmentation=True\n\n\nnormalize_image=False\n\n\nhorizontal_flip=True\nprobability_horizontal_flip=0.2\n\n\nvertical_flip=True\nprobability_vertical_flip=0.5\n\n\nrotation90=False\nprobability_rotation90=0.3\n\n\npixel_value_scale=False\n\n\nentire_rgb_to_grey=True\nprobability_entire_rgb_to_grey=0.07\n\n\nadjust_brightness=False\nmax_delta_adjust_brightness=0.2\n\n\nadjust_contrast=True\nmin_delta_adjust_contrast=0.8\nmax_delta_adjust_contrast=1.25\n\n\nadjust_hue=False\nmax_delta_adjust_hue=0.02\n\n\nadjust_saturation=False\nmin_delta_adjust_saturation=0.8\nmax_delta_adjust_saturation=1.25\n\n\ndistort_color=False\ncolor_ordering=1\n\n\ncrop_image=False\nmin_object_covered_crop_image=1.0\nmin_aspect_ratio_crop_image=0.75\nmax_aspect_ratio_crop_image=1.33\nmin_area_crop_image=0.1\nmax_area_crop_image=1.0\noverlap_thresh_crop_image=0.3\nclip_boxes_crop_image=True\nrandom_coef_crop_image=0.0\n\n\npad_image=False\n\n\ncrop_pad_image=False\n\n\ncrop_to_aspect_ratio=False\naspect_ratio_crop_to_aspect_ratio=1.0\noverlap_thresh_crop_to_aspect_ratio=0.3\nclip_boxes_crop_to_aspect_ratio=True\n\n\nblack_patches=True\nmax_black_patches=10\nprobability_black_patches=0.2\nsize_to_image_ratio=0.1\n\n\nrgb_to_grey=False\n\n\ndrop_label_probabilistically=False\nlabel=1\ndrop_probability=1.0\n\n\njpeg_quality=False\nrandom_coef_jpeg_quality=0.0\nmin_jpeg_quality=0\nmax_jpeg_quality=100\n\n\npatch_gaussian=False\nrandom_coef_patch_gaussian=0.0\nmin_patch_size=1\nmax_patch_size=250\nmin_gaussian_stddev=0.0\nmax_gaussian_stddev=1.0\n\n```\n\n\u041d\u0435\u043e\u0431\u0445\u043e\u0434\u0438\u043c\u043e \u0437\u0430\u043c\u0435\u043d\u0438\u0442\u044c \u043a\u043e\u043d\u0444\u0438\u0433\u0443\u0440\u0430\u0446\u0438\u044e \u0438\u0437 \u0440\u0430\u0437\u0434\u0435\u043b\u0430 Environment \u043d\u0430 \u043f\u043e\u043b\u044c\u0437\u043e\u0432\u0430\u0442\u0435\u043b\u044c\u0441\u043a\u0443\u044e. \u041e\u0441\u0442\u0430\u043b\u044c\u043d\u044b\u0435 \u043f\u0430\u0440\u0430\u043c\u0435\u0442\u0440\u044b \u043d\u0430\u0441\u0442\u0440\u0430\u0438\u0432\u0430\u044e\u0442\u0441\u044f \u043f\u043e \u0436\u0435\u043b\u0430\u043d\u0438\u044e.\n\n",
"bugtrack_url": null,
"license": "",
"summary": "Module to automate object detection process.",
"version": "1.0.23",
"split_keywords": [
"objectdetection",
"automl",
"autood"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "fd8937ce588956718b165663932344b89bbfd5e30d041fa0cc326e6a05d1ff55",
"md5": "1c01539e530a2fae03cd5f28c38acb0e",
"sha256": "5e0c9c405c1b96e8bcb43ffd6afcb50a615b8a328dddd36feb7fb56a11d328ad"
},
"downloads": -1,
"filename": "autoOD-1.0.23.tar.gz",
"has_sig": false,
"md5_digest": "1c01539e530a2fae03cd5f28c38acb0e",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 57199,
"upload_time": "2023-02-02T17:43:59",
"upload_time_iso_8601": "2023-02-02T17:43:59.497093Z",
"url": "https://files.pythonhosted.org/packages/fd/89/37ce588956718b165663932344b89bbfd5e30d041fa0cc326e6a05d1ff55/autoOD-1.0.23.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-02-02 17:43:59",
"github": false,
"gitlab": false,
"bitbucket": false,
"lcname": "autood"
}