autocensus


Nameautocensus JSON
Version 2.2.0 PyPI version JSON
download
home_pagehttps://github.com/cmsetzer/autocensus
SummaryA tool for collecting ACS and geospatial data from the Census API
upload_time2024-08-02 20:45:59
maintainerNone
docs_urlNone
authorChristopher Setzer
requires_python<4.0,>=3.9
licenseMIT
keywords census acs api data
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # autocensus

A Python package for collecting American Community Survey (ACS) data and associated geometry from the [Census API] in a [pandas] dataframe.

[Census API]: https://www.census.gov/developers
[pandas]: https://pandas.pydata.org

## Contents

- [Installation](#installation)
- [Quickstart](#quickstart)
- [Geometry](#geometry)
  - [Points](#points)
  - [Polygons](#polygons)
    - [Shapefile resolution](#shapefile-resolution)
    - [Shapefile caching](#shapefile-caching)

## Installation

autocensus requires Python 3.9 or higher. Install as follows:

```sh
pip install autocensus
```

To run autocensus, you must specify a [Census API key] via either the `census_api_key` keyword argument (as shown in the example below) or by setting the environment variable `CENSUS_API_KEY`.

[Census API key]: https://api.census.gov/data/key_signup.html

## Quickstart

```python
from autocensus import Query

# Configure query
query = Query(
    estimate=1,
    years=[2017, 2018],
    variables=['DP03_0025E', 'S0103_C01_104E'],
    for_geo='county:033',
    in_geo=['state:53'],
    # Optional arg to add geometry: 'points', 'polygons', or None (default)
    geometry='points',
    # Fill in the following with your actual Census API key
    census_api_key='Your Census API key'
)

# Run query and collect output in dataframe
dataframe = query.run()
```

Output:

| name                    | geo_id         | geo_type | year | date       | variable_code  | variable_label                                                                             | variable_concept                                  | annotation |  value | geometry  |
| :---------------------- | :------------- | :------- | ---: | :--------- | :------------- | :----------------------------------------------------------------------------------------- | :------------------------------------------------ | ---------: | -----: | :-------- |
| King County, Washington | 0500000US53033 | county   | 2017 | 2017-12-31 | DP03_0025E     | Estimate!!COMMUTING TO WORK!!Mean travel time to work (minutes)                            | SELECTED ECONOMIC CHARACTERISTICS                 |            |   30.0 | POINT (…) |
| King County, Washington | 0500000US53033 | county   | 2018 | 2018-12-31 | DP03_0025E     | Estimate!!COMMUTING TO WORK!!Workers 16 years and over!!Mean travel time to work (minutes) | SELECTED ECONOMIC CHARACTERISTICS                 |            |   30.2 | POINT (…) |
| King County, Washington | 0500000US53033 | county   | 2017 | 2017-12-31 | S0103_C01_104E | Total!!Estimate!!GROSS RENT!!Median gross rent (dollars)                                   | POPULATION 65 YEARS AND OVER IN THE UNITED STATES |            | 1555.0 | POINT (…) |
| King County, Washington | 0500000US53033 | county   | 2018 | 2018-12-31 | S0103_C01_104E | Estimate!!Total!!Renter-occupied housing units!!GROSS RENT!!Median gross rent (dollars)    | POPULATION 65 YEARS AND OVER IN THE UNITED STATES |            | 1674.0 | POINT (…) |

## Geometry

autocensus supports point- and polygon-based geometry data for many years and geographies by way of the Census Bureau's [Gazetteer Files] and [Cartographic Boundary Files].

Here's how to add geometry to your data:

[Gazetteer Files]: https://www.census.gov/geographies/reference-files/time-series/geo/gazetteer-files.html
[Cartographic Boundary Files]: https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html

### Points

Point data from the Census Bureau's Gazetteer Files is generally available for years from 2012 on in the following geographies:

- Nation-level
  - `urban area`
  - `zip code tabulation area`
  - `county`
  - `congressional district`
  - `metropolitan statistical area/micropolitan statistical area`
  - `american indian area/alaska native area/hawaiian home land`
- State-level
  - `county subdivision`
  - `tract`
  - `place`
  - `state legislative district (upper chamber)`
  - `state legislative district (lower chamber)`

Example:

```python
from autocensus import Query

query = Query(
    estimate=5,
    years=[2018],
    variables=['DP03_0025E'],
    for_geo=['county:033'],
    in_geo=['state:53'],
    geometry='points'
)
dataframe = query.run()
```

### Polygons

Polygon data from the Census Bureau's Cartographic Boundary Shapefiles is generally available for years from 2013 on in the following geographies:

- Nation-level
  - `nation`
  - `region`
  - `division`
  - `state`
  - `urban area`
  - `zip code tabulation area`
  - `county`
  - `congressional district`
  - `metropolitan statistical area/micropolitan statistical area`
  - `combined statistical area`
  - `american indian area/alaska native area/hawaiian home land`
  - `new england city and town area`
- State-level
  - `alaska native regional corporation`
  - `block group`
  - `county subdivision`
  - `tract`
  - `place`
  - `public use microdata area`
  - `state legislative district (upper chamber)`
  - `state legislative district (lower chamber)`

Example:

```python
from autocensus import Query

query = Query(
    estimate=5,
    years=[2018],
    variables=['DP03_0025E'],
    for_geo=['county:033'],
    in_geo=['state:53'],
    geometry='polygons'
)
dataframe = query.run()
```

#### Shapefile resolution

By default, autocensus will attempt to fetch almost all shapefiles at a resolution of 1 : 500,000 (`500k`). Some sources among the Cartographic Boundary Shapefiles are also available at the lower resolutions of 1 : 5,000,000 (`5m`) or 1 : 20,000,000 (`20m`). To attempt to download a shapefile at a specific resolution, pass a value to `Query`'s optional `resolution` parameter:

```python
from autocensus import Query

query = Query(
    estimate=5,
    years=[2018],
    variables=['DP03_0025E'],
    for_geo=['county:*'],
    in_geo=['state:53'],
    geometry='polygons',
    # Optional arg to set a specific resolution: '500k', '5m', or '20m'
    resolution='20m'
)
```

Setting a specific resolution is only supported for polygon-based geometry.

#### Shapefile caching

To improve performance across queries that include polygon-based geometry data, autocensus will cache Census shapefiles on disk by default. The cache directory location depends on your OS; you can look it up from `autocensus.constants.CACHE_DIRECTORY_PATH` like so:

```shell
python -c "import autocensus; print(autocensus.constants.CACHE_DIRECTORY_PATH)"
```

Sometimes it is useful to clear this cache directory, especially if you're running into persistent shapefile-related problems. You can clear the cache by manually deleting the cache directory or by executing the `autocensus.clear_cache` function:

```shell
python -c "import autocensus; autocensus.clear_cache()"
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/cmsetzer/autocensus",
    "name": "autocensus",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": "census, acs, api, data",
    "author": "Christopher Setzer",
    "author_email": "cmsetzer.github@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/fc/61/b58ba8967e604454e318b013501ffb674f5498ebd6f24899e08205ab1511/autocensus-2.2.0.tar.gz",
    "platform": null,
    "description": "# autocensus\n\nA Python package for collecting American Community Survey (ACS) data and associated geometry from the [Census API] in a [pandas] dataframe.\n\n[Census API]: https://www.census.gov/developers\n[pandas]: https://pandas.pydata.org\n\n## Contents\n\n- [Installation](#installation)\n- [Quickstart](#quickstart)\n- [Geometry](#geometry)\n  - [Points](#points)\n  - [Polygons](#polygons)\n    - [Shapefile resolution](#shapefile-resolution)\n    - [Shapefile caching](#shapefile-caching)\n\n## Installation\n\nautocensus requires Python 3.9 or higher. Install as follows:\n\n```sh\npip install autocensus\n```\n\nTo run autocensus, you must specify a [Census API key] via either the `census_api_key` keyword argument (as shown in the example below) or by setting the environment variable `CENSUS_API_KEY`.\n\n[Census API key]: https://api.census.gov/data/key_signup.html\n\n## Quickstart\n\n```python\nfrom autocensus import Query\n\n# Configure query\nquery = Query(\n    estimate=1,\n    years=[2017, 2018],\n    variables=['DP03_0025E', 'S0103_C01_104E'],\n    for_geo='county:033',\n    in_geo=['state:53'],\n    # Optional arg to add geometry: 'points', 'polygons', or None (default)\n    geometry='points',\n    # Fill in the following with your actual Census API key\n    census_api_key='Your Census API key'\n)\n\n# Run query and collect output in dataframe\ndataframe = query.run()\n```\n\nOutput:\n\n| name                    | geo_id         | geo_type | year | date       | variable_code  | variable_label                                                                             | variable_concept                                  | annotation |  value | geometry  |\n| :---------------------- | :------------- | :------- | ---: | :--------- | :------------- | :----------------------------------------------------------------------------------------- | :------------------------------------------------ | ---------: | -----: | :-------- |\n| King County, Washington | 0500000US53033 | county   | 2017 | 2017-12-31 | DP03_0025E     | Estimate!!COMMUTING TO WORK!!Mean travel time to work (minutes)                            | SELECTED ECONOMIC CHARACTERISTICS                 |            |   30.0 | POINT (\u2026) |\n| King County, Washington | 0500000US53033 | county   | 2018 | 2018-12-31 | DP03_0025E     | Estimate!!COMMUTING TO WORK!!Workers 16 years and over!!Mean travel time to work (minutes) | SELECTED ECONOMIC CHARACTERISTICS                 |            |   30.2 | POINT (\u2026) |\n| King County, Washington | 0500000US53033 | county   | 2017 | 2017-12-31 | S0103_C01_104E | Total!!Estimate!!GROSS RENT!!Median gross rent (dollars)                                   | POPULATION 65 YEARS AND OVER IN THE UNITED STATES |            | 1555.0 | POINT (\u2026) |\n| King County, Washington | 0500000US53033 | county   | 2018 | 2018-12-31 | S0103_C01_104E | Estimate!!Total!!Renter-occupied housing units!!GROSS RENT!!Median gross rent (dollars)    | POPULATION 65 YEARS AND OVER IN THE UNITED STATES |            | 1674.0 | POINT (\u2026) |\n\n## Geometry\n\nautocensus supports point- and polygon-based geometry data for many years and geographies by way of the Census Bureau's [Gazetteer Files] and [Cartographic Boundary Files].\n\nHere's how to add geometry to your data:\n\n[Gazetteer Files]: https://www.census.gov/geographies/reference-files/time-series/geo/gazetteer-files.html\n[Cartographic Boundary Files]: https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html\n\n### Points\n\nPoint data from the Census Bureau's Gazetteer Files is generally available for years from 2012 on in the following geographies:\n\n- Nation-level\n  - `urban area`\n  - `zip code tabulation area`\n  - `county`\n  - `congressional district`\n  - `metropolitan statistical area/micropolitan statistical area`\n  - `american indian area/alaska native area/hawaiian home land`\n- State-level\n  - `county subdivision`\n  - `tract`\n  - `place`\n  - `state legislative district (upper chamber)`\n  - `state legislative district (lower chamber)`\n\nExample:\n\n```python\nfrom autocensus import Query\n\nquery = Query(\n    estimate=5,\n    years=[2018],\n    variables=['DP03_0025E'],\n    for_geo=['county:033'],\n    in_geo=['state:53'],\n    geometry='points'\n)\ndataframe = query.run()\n```\n\n### Polygons\n\nPolygon data from the Census Bureau's Cartographic Boundary Shapefiles is generally available for years from 2013 on in the following geographies:\n\n- Nation-level\n  - `nation`\n  - `region`\n  - `division`\n  - `state`\n  - `urban area`\n  - `zip code tabulation area`\n  - `county`\n  - `congressional district`\n  - `metropolitan statistical area/micropolitan statistical area`\n  - `combined statistical area`\n  - `american indian area/alaska native area/hawaiian home land`\n  - `new england city and town area`\n- State-level\n  - `alaska native regional corporation`\n  - `block group`\n  - `county subdivision`\n  - `tract`\n  - `place`\n  - `public use microdata area`\n  - `state legislative district (upper chamber)`\n  - `state legislative district (lower chamber)`\n\nExample:\n\n```python\nfrom autocensus import Query\n\nquery = Query(\n    estimate=5,\n    years=[2018],\n    variables=['DP03_0025E'],\n    for_geo=['county:033'],\n    in_geo=['state:53'],\n    geometry='polygons'\n)\ndataframe = query.run()\n```\n\n#### Shapefile resolution\n\nBy default, autocensus will attempt to fetch almost all shapefiles at a resolution of 1 : 500,000 (`500k`). Some sources among the Cartographic Boundary Shapefiles are also available at the lower resolutions of 1 : 5,000,000 (`5m`) or 1 : 20,000,000 (`20m`). To attempt to download a shapefile at a specific resolution, pass a value to `Query`'s optional `resolution` parameter:\n\n```python\nfrom autocensus import Query\n\nquery = Query(\n    estimate=5,\n    years=[2018],\n    variables=['DP03_0025E'],\n    for_geo=['county:*'],\n    in_geo=['state:53'],\n    geometry='polygons',\n    # Optional arg to set a specific resolution: '500k', '5m', or '20m'\n    resolution='20m'\n)\n```\n\nSetting a specific resolution is only supported for polygon-based geometry.\n\n#### Shapefile caching\n\nTo improve performance across queries that include polygon-based geometry data, autocensus will cache Census shapefiles on disk by default. The cache directory location depends on your OS; you can look it up from `autocensus.constants.CACHE_DIRECTORY_PATH` like so:\n\n```shell\npython -c \"import autocensus; print(autocensus.constants.CACHE_DIRECTORY_PATH)\"\n```\n\nSometimes it is useful to clear this cache directory, especially if you're running into persistent shapefile-related problems. You can clear the cache by manually deleting the cache directory or by executing the `autocensus.clear_cache` function:\n\n```shell\npython -c \"import autocensus; autocensus.clear_cache()\"\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A tool for collecting ACS and geospatial data from the Census API",
    "version": "2.2.0",
    "project_urls": {
        "Homepage": "https://github.com/cmsetzer/autocensus"
    },
    "split_keywords": [
        "census",
        " acs",
        " api",
        " data"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "989858a98c5a77409232f6391679ae2257ba9641f8a1320c213a71928cef7677",
                "md5": "382df47dac4b2586594b8cf7782c9049",
                "sha256": "f485184f524ba2b528964b6d04eeb8c87c1210160fde59dcac4173ee1b85ca98"
            },
            "downloads": -1,
            "filename": "autocensus-2.2.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "382df47dac4b2586594b8cf7782c9049",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 21221,
            "upload_time": "2024-08-02T20:45:58",
            "upload_time_iso_8601": "2024-08-02T20:45:58.561489Z",
            "url": "https://files.pythonhosted.org/packages/98/98/58a98c5a77409232f6391679ae2257ba9641f8a1320c213a71928cef7677/autocensus-2.2.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fc61b58ba8967e604454e318b013501ffb674f5498ebd6f24899e08205ab1511",
                "md5": "8faaaa0e830b6d2fddb159b0374b5298",
                "sha256": "72013e495778bc10bfb787ccd97541341aa4b041ac1265670753a60a8ab8ae6d"
            },
            "downloads": -1,
            "filename": "autocensus-2.2.0.tar.gz",
            "has_sig": false,
            "md5_digest": "8faaaa0e830b6d2fddb159b0374b5298",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 17266,
            "upload_time": "2024-08-02T20:45:59",
            "upload_time_iso_8601": "2024-08-02T20:45:59.887205Z",
            "url": "https://files.pythonhosted.org/packages/fc/61/b58ba8967e604454e318b013501ffb674f5498ebd6f24899e08205ab1511/autocensus-2.2.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-02 20:45:59",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "cmsetzer",
    "github_project": "autocensus",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "autocensus"
}
        
Elapsed time: 0.28041s