Name | autodistill-bioclip JSON |
Version |
0.1.0
JSON |
| download |
home_page | |
Summary | BioCLIP model for use with Autodistill |
upload_time | 2024-02-08 09:09:54 |
maintainer | |
docs_url | None |
author | Roboflow |
requires_python | >=3.7 |
license | |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
<div align="center">
<p>
<a align="center" href="" target="_blank">
<img
width="850"
src="https://media.roboflow.com/open-source/autodistill/autodistill-banner.png"
>
</a>
</p>
</div>
# Autodistill BioCLIP Module
This repository contains the code supporting the BioCLIP base model for use with [Autodistill](https://github.com/autodistill/autodistill).
[BioCLIP](https://github.com/Imageomics/BioCLIP) is a CLIP model trained on the [TreeOfLife-10M](https://huggingface.co/datasets/imageomics/TreeOfLife-10M) dataset, created by the researchers who made BioCLIP. The dataset on which BioCLIP was trained included more than 450,000 classes.
You can use BioCLIP to auto-label natural organisms (i.e. animals, plants) in images for use in training a classification model. You can combine this model with a grounded detection model to identify the exact region in which a given class is present in an image. [Learn more about combining models with Autodistill](https://docs.autodistill.com/utilities/combine-models/).
Read the full [Autodistill documentation](https://autodistill.github.io/autodistill/).
Read the [BioCLIP Autodistill documentation](https://autodistill.github.io/autodistill/base_models/bioclip/).
## Installation
To use BioCLIP with autodistill, you need to install the following dependency:
```bash
pip3 install autodistill-bioclip
```
## Quickstart
```python
from autodistill_bioclip import BioCLIP
# define an ontology to map class names to our BioCLIP prompt
# the ontology dictionary has the format {caption: class}
# where caption is the prompt sent to the base model, and class is the label that will
# be saved for that caption in the generated annotations
# then, load the model
classes = ["arabica", "robusta"]
base_model = BioCLIP(
ontology=CaptionOntology(
{
item: item for item in classes
}
)
)
results = base_model.predict("../arabica.jpeg")
top = results.get_top_k(1)
top_class = classes[top[0][0]]
print(f"Predicted class: {top_class}")
```
## License
This project is licensed under an [MIT license](LICENSE).
The underlying [BioCLIP model](https://huggingface.co/imageomics/bioclip) is also licensed under an MIT license.
## 🏆 Contributing
We love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you 🙏 to all our contributors!
Raw data
{
"_id": null,
"home_page": "",
"name": "autodistill-bioclip",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "",
"author": "Roboflow",
"author_email": "support@roboflow.com",
"download_url": "https://files.pythonhosted.org/packages/dd/a2/8cbb914dd506cec9ec4661dcd221950bdd51fdad5f890324c43273b9d614/autodistill-bioclip-0.1.0.tar.gz",
"platform": null,
"description": "<div align=\"center\">\n <p>\n <a align=\"center\" href=\"\" target=\"_blank\">\n <img\n width=\"850\"\n src=\"https://media.roboflow.com/open-source/autodistill/autodistill-banner.png\"\n >\n </a>\n </p>\n</div>\n\n# Autodistill BioCLIP Module\n\nThis repository contains the code supporting the BioCLIP base model for use with [Autodistill](https://github.com/autodistill/autodistill).\n\n[BioCLIP](https://github.com/Imageomics/BioCLIP) is a CLIP model trained on the [TreeOfLife-10M](https://huggingface.co/datasets/imageomics/TreeOfLife-10M) dataset, created by the researchers who made BioCLIP. The dataset on which BioCLIP was trained included more than 450,000 classes.\n\nYou can use BioCLIP to auto-label natural organisms (i.e. animals, plants) in images for use in training a classification model. You can combine this model with a grounded detection model to identify the exact region in which a given class is present in an image. [Learn more about combining models with Autodistill](https://docs.autodistill.com/utilities/combine-models/).\n\nRead the full [Autodistill documentation](https://autodistill.github.io/autodistill/).\n\nRead the [BioCLIP Autodistill documentation](https://autodistill.github.io/autodistill/base_models/bioclip/).\n\n## Installation\n\nTo use BioCLIP with autodistill, you need to install the following dependency:\n\n\n```bash\npip3 install autodistill-bioclip\n```\n\n## Quickstart\n\n```python\nfrom autodistill_bioclip import BioCLIP\n\n# define an ontology to map class names to our BioCLIP prompt\n# the ontology dictionary has the format {caption: class}\n# where caption is the prompt sent to the base model, and class is the label that will\n# be saved for that caption in the generated annotations\n# then, load the model\nclasses = [\"arabica\", \"robusta\"]\n\nbase_model = BioCLIP(\n ontology=CaptionOntology(\n {\n item: item for item in classes\n }\n )\n)\n\nresults = base_model.predict(\"../arabica.jpeg\")\n\ntop = results.get_top_k(1)\ntop_class = classes[top[0][0]]\n\nprint(f\"Predicted class: {top_class}\")\n```\n\n\n## License\n\nThis project is licensed under an [MIT license](LICENSE).\n\nThe underlying [BioCLIP model](https://huggingface.co/imageomics/bioclip) is also licensed under an MIT license.\n\n## \ud83c\udfc6 Contributing\n\nWe love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you \ud83d\ude4f to all our contributors!\n",
"bugtrack_url": null,
"license": "",
"summary": "BioCLIP model for use with Autodistill",
"version": "0.1.0",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "cb9fd4c2306e93e5c8f4beda2c323f6530794caf48bdd5b5a14a7c333b3a3ac9",
"md5": "a8e524f9c76cb2284354fbd932d8539a",
"sha256": "96ffacde93916bd22f4fd09af97ba30c438b92281dca56be26f0e9739c0f8298"
},
"downloads": -1,
"filename": "autodistill_bioclip-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "a8e524f9c76cb2284354fbd932d8539a",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 4483,
"upload_time": "2024-02-08T09:09:53",
"upload_time_iso_8601": "2024-02-08T09:09:53.304394Z",
"url": "https://files.pythonhosted.org/packages/cb/9f/d4c2306e93e5c8f4beda2c323f6530794caf48bdd5b5a14a7c333b3a3ac9/autodistill_bioclip-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "dda28cbb914dd506cec9ec4661dcd221950bdd51fdad5f890324c43273b9d614",
"md5": "be02e1554caf038ffe74ee3341de412f",
"sha256": "c87f28bd6a758be599dbb0108ed92ac84a3ee81cb95f23f69e9408d10a1135ac"
},
"downloads": -1,
"filename": "autodistill-bioclip-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "be02e1554caf038ffe74ee3341de412f",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 4206,
"upload_time": "2024-02-08T09:09:54",
"upload_time_iso_8601": "2024-02-08T09:09:54.663687Z",
"url": "https://files.pythonhosted.org/packages/dd/a2/8cbb914dd506cec9ec4661dcd221950bdd51fdad5f890324c43273b9d614/autodistill-bioclip-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-02-08 09:09:54",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "autodistill-bioclip"
}