<div align="center">
<p>
<a align="center" href="" target="_blank">
<img
width="850"
src="https://media.roboflow.com/open-source/autodistill/autodistill-banner.png?3"
>
</a>
</p>
</div>
# Autodistill DETR Module
This repository contains the code supporting the DETR base model for use with [Autodistill](https://github.com/autodistill/autodistill).
[DETR](https://huggingface.co/docs/transformers/model_doc/detr) is a transformer-based computer vision model you can use for object detection. Autodistill supports training a model using the Meta Research Resnet 50 checkpoint.
Read the full [Autodistill documentation](https://autodistill.github.io/autodistill/).
Read the [DETR Autodistill documentation](https://autodistill.github.io/autodistill/target_models/detr/).
## Installation
To use DETR with autodistill, you need to install the following dependency:
```bash
pip3 install autodistill-detr
```
## Quickstart
```python
from autodistill_detr import DETR
# load the model
target_model = DETR()
# train for 10 epochs
target_model.train("./roads", epochs=10)
# run inference on an image
target_model.predict("./roads/valid/-3-_jpg.rf.bee113a09b22282980c289842aedfc4a.jpg")
```
## License
This project is licensed under an [Apache 2.0 license](LICENSE). See the [Hugging Face model card for the DETR Resnet 50](https://huggingface.co/facebook/detr-resnet-50) model for more information on the model license.
## 🏆 Contributing
We love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you 🙏 to all our contributors!
Raw data
{
"_id": null,
"home_page": "https://github.com/autodistill/autodistill-detr",
"name": "autodistill-detr",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "",
"author": "Roboflow",
"author_email": "support@roboflow.com",
"download_url": "https://files.pythonhosted.org/packages/37/da/e7befc7f6791c5a889b5ec9a88e76785fa476ea2c933cf044e611a264fe5/autodistill-detr-0.1.1.tar.gz",
"platform": null,
"description": "<div align=\"center\">\n <p>\n <a align=\"center\" href=\"\" target=\"_blank\">\n <img\n width=\"850\"\n src=\"https://media.roboflow.com/open-source/autodistill/autodistill-banner.png?3\"\n >\n </a>\n </p>\n</div>\n\n# Autodistill DETR Module\n\nThis repository contains the code supporting the DETR base model for use with [Autodistill](https://github.com/autodistill/autodistill).\n\n[DETR](https://huggingface.co/docs/transformers/model_doc/detr) is a transformer-based computer vision model you can use for object detection. Autodistill supports training a model using the Meta Research Resnet 50 checkpoint.\n\nRead the full [Autodistill documentation](https://autodistill.github.io/autodistill/).\n\nRead the [DETR Autodistill documentation](https://autodistill.github.io/autodistill/target_models/detr/).\n\n## Installation\n\nTo use DETR with autodistill, you need to install the following dependency:\n\n\n```bash\npip3 install autodistill-detr\n```\n\n## Quickstart\n\n```python\nfrom autodistill_detr import DETR\n\n# load the model\ntarget_model = DETR()\n\n# train for 10 epochs\ntarget_model.train(\"./roads\", epochs=10)\n\n# run inference on an image\ntarget_model.predict(\"./roads/valid/-3-_jpg.rf.bee113a09b22282980c289842aedfc4a.jpg\")\n```\n\n## License\n\nThis project is licensed under an [Apache 2.0 license](LICENSE). See the [Hugging Face model card for the DETR Resnet 50](https://huggingface.co/facebook/detr-resnet-50) model for more information on the model license.\n\n## \ud83c\udfc6 Contributing\n\nWe love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you \ud83d\ude4f to all our contributors!\n",
"bugtrack_url": null,
"license": "",
"summary": "DETR module for use with Autodistill",
"version": "0.1.1",
"project_urls": {
"Homepage": "https://github.com/autodistill/autodistill-detr"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "b068d3362615e0daf737b624897f40a848d462fe18badd053f539cffb91a3a3a",
"md5": "53b7e813585a2c9feb29f4b4f2d51329",
"sha256": "c6c2af5f61e6e7889115b5f7b900b08aeea4c6d019eb5714049f0e54a7916223"
},
"downloads": -1,
"filename": "autodistill_detr-0.1.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "53b7e813585a2c9feb29f4b4f2d51329",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 8550,
"upload_time": "2023-11-01T11:42:32",
"upload_time_iso_8601": "2023-11-01T11:42:32.705295Z",
"url": "https://files.pythonhosted.org/packages/b0/68/d3362615e0daf737b624897f40a848d462fe18badd053f539cffb91a3a3a/autodistill_detr-0.1.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "37dae7befc7f6791c5a889b5ec9a88e76785fa476ea2c933cf044e611a264fe5",
"md5": "45d1031885db0c5c9df253e36cb2bbe6",
"sha256": "6775c1ac4fd2b1fbcd0d361afa207a926cfdb34cd1e936b5da151dc47c4c526a"
},
"downloads": -1,
"filename": "autodistill-detr-0.1.1.tar.gz",
"has_sig": false,
"md5_digest": "45d1031885db0c5c9df253e36cb2bbe6",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 8196,
"upload_time": "2023-11-01T11:42:34",
"upload_time_iso_8601": "2023-11-01T11:42:34.236597Z",
"url": "https://files.pythonhosted.org/packages/37/da/e7befc7f6791c5a889b5ec9a88e76785fa476ea2c933cf044e611a264fe5/autodistill-detr-0.1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-11-01 11:42:34",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "autodistill",
"github_project": "autodistill-detr",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "autodistill-detr"
}