autodistill-detr


Nameautodistill-detr JSON
Version 0.1.1 PyPI version JSON
download
home_pagehttps://github.com/autodistill/autodistill-detr
SummaryDETR module for use with Autodistill
upload_time2023-11-01 11:42:34
maintainer
docs_urlNone
authorRoboflow
requires_python>=3.7
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
  <p>
    <a align="center" href="" target="_blank">
      <img
        width="850"
        src="https://media.roboflow.com/open-source/autodistill/autodistill-banner.png?3"
      >
    </a>
  </p>
</div>

# Autodistill DETR Module

This repository contains the code supporting the DETR base model for use with [Autodistill](https://github.com/autodistill/autodistill).

[DETR](https://huggingface.co/docs/transformers/model_doc/detr) is a transformer-based computer vision model you can use for object detection. Autodistill supports training a model using the Meta Research Resnet 50 checkpoint.

Read the full [Autodistill documentation](https://autodistill.github.io/autodistill/).

Read the [DETR Autodistill documentation](https://autodistill.github.io/autodistill/target_models/detr/).

## Installation

To use DETR with autodistill, you need to install the following dependency:


```bash
pip3 install autodistill-detr
```

## Quickstart

```python
from autodistill_detr import DETR

# load the model
target_model = DETR()

# train for 10 epochs
target_model.train("./roads", epochs=10)

# run inference on an image
target_model.predict("./roads/valid/-3-_jpg.rf.bee113a09b22282980c289842aedfc4a.jpg")
```

## License

This project is licensed under an [Apache 2.0 license](LICENSE). See the [Hugging Face model card for the DETR Resnet 50](https://huggingface.co/facebook/detr-resnet-50) model for more information on the model license.

## 🏆 Contributing

We love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you 🙏 to all our contributors!

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/autodistill/autodistill-detr",
    "name": "autodistill-detr",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "",
    "author": "Roboflow",
    "author_email": "support@roboflow.com",
    "download_url": "https://files.pythonhosted.org/packages/37/da/e7befc7f6791c5a889b5ec9a88e76785fa476ea2c933cf044e611a264fe5/autodistill-detr-0.1.1.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\n  <p>\n    <a align=\"center\" href=\"\" target=\"_blank\">\n      <img\n        width=\"850\"\n        src=\"https://media.roboflow.com/open-source/autodistill/autodistill-banner.png?3\"\n      >\n    </a>\n  </p>\n</div>\n\n# Autodistill DETR Module\n\nThis repository contains the code supporting the DETR base model for use with [Autodistill](https://github.com/autodistill/autodistill).\n\n[DETR](https://huggingface.co/docs/transformers/model_doc/detr) is a transformer-based computer vision model you can use for object detection. Autodistill supports training a model using the Meta Research Resnet 50 checkpoint.\n\nRead the full [Autodistill documentation](https://autodistill.github.io/autodistill/).\n\nRead the [DETR Autodistill documentation](https://autodistill.github.io/autodistill/target_models/detr/).\n\n## Installation\n\nTo use DETR with autodistill, you need to install the following dependency:\n\n\n```bash\npip3 install autodistill-detr\n```\n\n## Quickstart\n\n```python\nfrom autodistill_detr import DETR\n\n# load the model\ntarget_model = DETR()\n\n# train for 10 epochs\ntarget_model.train(\"./roads\", epochs=10)\n\n# run inference on an image\ntarget_model.predict(\"./roads/valid/-3-_jpg.rf.bee113a09b22282980c289842aedfc4a.jpg\")\n```\n\n## License\n\nThis project is licensed under an [Apache 2.0 license](LICENSE). See the [Hugging Face model card for the DETR Resnet 50](https://huggingface.co/facebook/detr-resnet-50) model for more information on the model license.\n\n## \ud83c\udfc6 Contributing\n\nWe love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you \ud83d\ude4f to all our contributors!\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "DETR module for use with Autodistill",
    "version": "0.1.1",
    "project_urls": {
        "Homepage": "https://github.com/autodistill/autodistill-detr"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b068d3362615e0daf737b624897f40a848d462fe18badd053f539cffb91a3a3a",
                "md5": "53b7e813585a2c9feb29f4b4f2d51329",
                "sha256": "c6c2af5f61e6e7889115b5f7b900b08aeea4c6d019eb5714049f0e54a7916223"
            },
            "downloads": -1,
            "filename": "autodistill_detr-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "53b7e813585a2c9feb29f4b4f2d51329",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 8550,
            "upload_time": "2023-11-01T11:42:32",
            "upload_time_iso_8601": "2023-11-01T11:42:32.705295Z",
            "url": "https://files.pythonhosted.org/packages/b0/68/d3362615e0daf737b624897f40a848d462fe18badd053f539cffb91a3a3a/autodistill_detr-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "37dae7befc7f6791c5a889b5ec9a88e76785fa476ea2c933cf044e611a264fe5",
                "md5": "45d1031885db0c5c9df253e36cb2bbe6",
                "sha256": "6775c1ac4fd2b1fbcd0d361afa207a926cfdb34cd1e936b5da151dc47c4c526a"
            },
            "downloads": -1,
            "filename": "autodistill-detr-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "45d1031885db0c5c9df253e36cb2bbe6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 8196,
            "upload_time": "2023-11-01T11:42:34",
            "upload_time_iso_8601": "2023-11-01T11:42:34.236597Z",
            "url": "https://files.pythonhosted.org/packages/37/da/e7befc7f6791c5a889b5ec9a88e76785fa476ea2c933cf044e611a264fe5/autodistill-detr-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-11-01 11:42:34",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "autodistill",
    "github_project": "autodistill-detr",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "autodistill-detr"
}
        
Elapsed time: 0.13524s