autodistill-dinov2


Nameautodistill-dinov2 JSON
Version 0.1.1 PyPI version JSON
download
home_pagehttps://github.com/autodistill/autodistill-dinov2
SummaryDINOv2 module for use with Autodistill
upload_time2023-12-06 11:30:39
maintainer
docs_urlNone
authorRoboflow
requires_python>=3.7
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
  <p>
    <a align="center" href="" target="_blank">
      <img
        width="850"
        src="https://media.roboflow.com/open-source/autodistill/autodistill-banner.png?3"
      >
    </a>
  </p>
</div>

# Autodistill DINOv2 Module

This repository contains the code supporting the DINOv2 base model for use with [Autodistill](https://github.com/autodistill/autodistill).

[DINOv2](https://github.com/facebookresearch/dinov2), developed by Meta Research, is a self-supervised training method for computer vision models. This library uses DINOv2 image embeddings with SVM to build a classification model.

Read the full [Autodistill documentation](https://docs.autodistill.com/autodistill/).

Read the [DINOv2 Autodistill documentation](https://docs.autodistill.com/target_models/dinov2/).

## Installation

To use DINOv2 with autodistill, you need to install the following dependency:


```bash
pip3 install autodistill-dinov2
```

## Quickstart

```python
from autodistill_dinov2 import DINOv2

target_model = DINOv2(None)

# train a model
# specify the directory where your annotations (in multiclass classification folder format)
# DINOv2 embeddings are saved in a file called "embeddings.json" the folder in which you are working
# with the structure {filename: embedding}
target_model.train("./context_images_labeled")

# get class list
# print(target_model.ontology.classes())

# run inference on the new model
pred = target_model.predict("./context_images_labeled/train/images/dog-7.jpg")

print(pred)
```


## License

The code in this repository is licensed under a [CC Attribution-NonCommercial 4.0 International](LICENSE) license.

## 🏆 Contributing

We love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you 🙏 to all our contributors!

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/autodistill/autodistill-dinov2",
    "name": "autodistill-dinov2",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "",
    "author": "Roboflow",
    "author_email": "support@roboflow.com",
    "download_url": "https://files.pythonhosted.org/packages/a4/d0/e10f836f8430476c88887d5e4df6cfcf0d88a3f2abcdb056041d106932a8/autodistill-dinov2-0.1.1.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\n  <p>\n    <a align=\"center\" href=\"\" target=\"_blank\">\n      <img\n        width=\"850\"\n        src=\"https://media.roboflow.com/open-source/autodistill/autodistill-banner.png?3\"\n      >\n    </a>\n  </p>\n</div>\n\n# Autodistill DINOv2 Module\n\nThis repository contains the code supporting the DINOv2 base model for use with [Autodistill](https://github.com/autodistill/autodistill).\n\n[DINOv2](https://github.com/facebookresearch/dinov2), developed by Meta Research, is a self-supervised training method for computer vision models. This library uses DINOv2 image embeddings with SVM to build a classification model.\n\nRead the full [Autodistill documentation](https://docs.autodistill.com/autodistill/).\n\nRead the [DINOv2 Autodistill documentation](https://docs.autodistill.com/target_models/dinov2/).\n\n## Installation\n\nTo use DINOv2 with autodistill, you need to install the following dependency:\n\n\n```bash\npip3 install autodistill-dinov2\n```\n\n## Quickstart\n\n```python\nfrom autodistill_dinov2 import DINOv2\n\ntarget_model = DINOv2(None)\n\n# train a model\n# specify the directory where your annotations (in multiclass classification folder format)\n# DINOv2 embeddings are saved in a file called \"embeddings.json\" the folder in which you are working\n# with the structure {filename: embedding}\ntarget_model.train(\"./context_images_labeled\")\n\n# get class list\n# print(target_model.ontology.classes())\n\n# run inference on the new model\npred = target_model.predict(\"./context_images_labeled/train/images/dog-7.jpg\")\n\nprint(pred)\n```\n\n\n## License\n\nThe code in this repository is licensed under a [CC Attribution-NonCommercial 4.0 International](LICENSE) license.\n\n## \ud83c\udfc6 Contributing\n\nWe love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you \ud83d\ude4f to all our contributors!\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "DINOv2 module for use with Autodistill",
    "version": "0.1.1",
    "project_urls": {
        "Homepage": "https://github.com/autodistill/autodistill-dinov2"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "195b29eee648f8c015e56762074e703bd2c9e623955a15f54bef9d158cf972d7",
                "md5": "cf25255aa46c73c66b6fb14c8cefbca4",
                "sha256": "d2b63c8459f0c7286267c10357002ab34789a6c5e52e561550d8a11aed31e3a9"
            },
            "downloads": -1,
            "filename": "autodistill_dinov2-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "cf25255aa46c73c66b6fb14c8cefbca4",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 10262,
            "upload_time": "2023-12-06T11:30:37",
            "upload_time_iso_8601": "2023-12-06T11:30:37.174393Z",
            "url": "https://files.pythonhosted.org/packages/19/5b/29eee648f8c015e56762074e703bd2c9e623955a15f54bef9d158cf972d7/autodistill_dinov2-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a4d0e10f836f8430476c88887d5e4df6cfcf0d88a3f2abcdb056041d106932a8",
                "md5": "587ecba2d1117c5fe8d9712c918b0863",
                "sha256": "87a0f3a72dd1a7531bdedae36b9662dbeadf610285b866aa66c32a9909600896"
            },
            "downloads": -1,
            "filename": "autodistill-dinov2-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "587ecba2d1117c5fe8d9712c918b0863",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 12866,
            "upload_time": "2023-12-06T11:30:39",
            "upload_time_iso_8601": "2023-12-06T11:30:39.038623Z",
            "url": "https://files.pythonhosted.org/packages/a4/d0/e10f836f8430476c88887d5e4df6cfcf0d88a3f2abcdb056041d106932a8/autodistill-dinov2-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-12-06 11:30:39",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "autodistill",
    "github_project": "autodistill-dinov2",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "autodistill-dinov2"
}
        
Elapsed time: 0.22835s