autodistill-efficient-yolo-world


Nameautodistill-efficient-yolo-world JSON
Version 0.1.1 PyPI version JSON
download
home_pagehttps://github.com/roboflow/autodistill-efficient-yolo-world
SummaryEfficientSAM + YOLO-World base model for use with Autodistill
upload_time2024-02-21 09:31:15
maintainer
docs_urlNone
authorRoboflow
requires_python>=3.7
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
  <p>
    <a align="center" href="" target="_blank">
      <img
        width="850"
        src="https://media.roboflow.com/open-source/autodistill/autodistill-banner.png"
      >
    </a>
  </p>
</div>

# Autodistill EfficientYOLOWorld Module

This repository contains the code supporting the EfficientYOLOWorld base model for use with [Autodistill](https://github.com/autodistill/autodistill).

EfficientYOLOWorld is a combination of two models:

1. YOLO-World, a zero-shot object detection model, and;
2. EfficientSAM, an image segmentation model.

This model runs EfficientSAM on each bounding box region generated by YOLO-World. This allows you to retrieve both the bounding box and the segmentation mask for each object of interest in an image.

Read the full [Autodistill documentation](https://autodistill.github.io/autodistill/).

Read the [EfficientYOLOWorld Autodistill documentation](https://autodistill.github.io/autodistill/base_models/efficient_yolo_world/).

## Installation

To use EfficientYOLOWorld with autodistill, you need to install the following dependency:


```bash
pip3 install autodistill-efficient-yolo-world
```

## Quickstart

```python
from autodistill_efficient_yolo_world import EfficientYOLOWorld
from autodistill.detection import CaptionOntology
import cv2
import supervision as sv

# define an ontology to map class names to our EfficientYOLOWorld prompt
# the ontology dictionary has the format {caption: class}
# where caption is the prompt sent to the base model, and class is the label that will
# be saved for that caption in the generated annotations
# then, load the model
base_model = EfficientYOLOWorld(ontology=CaptionOntology({"book": "book"}))

# predict on an image
result = base_model.predict("bookshelf.jpeg", confidence=0.1)

image = cv2.imread("bookshelf.jpeg")

mask_annotator = sv.MaskAnnotator()
annotated_frame = mask_annotator.annotate(
	scene=image.copy(),
	detections=result,
)

sv.plot_image(annotated_frame)

base_model.label("./context_images", extension=".jpeg")
```


## License

EfficientSAM is licensed under an [Apache 2.0 license](EFFICIENT_SAM_LICENSE).

YOLO-World is licensed under a [GPL-3.0 license](YOLO_WORLD_LICENSE).

## 🏆 Contributing

We love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you 🙏 to all our contributors!

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/roboflow/autodistill-efficient-yolo-world",
    "name": "autodistill-efficient-yolo-world",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "",
    "author": "Roboflow",
    "author_email": "support@roboflow.com",
    "download_url": "https://files.pythonhosted.org/packages/63/2f/145af030407771d48be1bb862a9fc6efdba085376bee681dd74fbe85df4d/autodistill-efficient-yolo-world-0.1.1.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\n  <p>\n    <a align=\"center\" href=\"\" target=\"_blank\">\n      <img\n        width=\"850\"\n        src=\"https://media.roboflow.com/open-source/autodistill/autodistill-banner.png\"\n      >\n    </a>\n  </p>\n</div>\n\n# Autodistill EfficientYOLOWorld Module\n\nThis repository contains the code supporting the EfficientYOLOWorld base model for use with [Autodistill](https://github.com/autodistill/autodistill).\n\nEfficientYOLOWorld is a combination of two models:\n\n1. YOLO-World, a zero-shot object detection model, and;\n2. EfficientSAM, an image segmentation model.\n\nThis model runs EfficientSAM on each bounding box region generated by YOLO-World. This allows you to retrieve both the bounding box and the segmentation mask for each object of interest in an image.\n\nRead the full [Autodistill documentation](https://autodistill.github.io/autodistill/).\n\nRead the [EfficientYOLOWorld Autodistill documentation](https://autodistill.github.io/autodistill/base_models/efficient_yolo_world/).\n\n## Installation\n\nTo use EfficientYOLOWorld with autodistill, you need to install the following dependency:\n\n\n```bash\npip3 install autodistill-efficient-yolo-world\n```\n\n## Quickstart\n\n```python\nfrom autodistill_efficient_yolo_world import EfficientYOLOWorld\nfrom autodistill.detection import CaptionOntology\nimport cv2\nimport supervision as sv\n\n# define an ontology to map class names to our EfficientYOLOWorld prompt\n# the ontology dictionary has the format {caption: class}\n# where caption is the prompt sent to the base model, and class is the label that will\n# be saved for that caption in the generated annotations\n# then, load the model\nbase_model = EfficientYOLOWorld(ontology=CaptionOntology({\"book\": \"book\"}))\n\n# predict on an image\nresult = base_model.predict(\"bookshelf.jpeg\", confidence=0.1)\n\nimage = cv2.imread(\"bookshelf.jpeg\")\n\nmask_annotator = sv.MaskAnnotator()\nannotated_frame = mask_annotator.annotate(\n\tscene=image.copy(),\n\tdetections=result,\n)\n\nsv.plot_image(annotated_frame)\n\nbase_model.label(\"./context_images\", extension=\".jpeg\")\n```\n\n\n## License\n\nEfficientSAM is licensed under an [Apache 2.0 license](EFFICIENT_SAM_LICENSE).\n\nYOLO-World is licensed under a [GPL-3.0 license](YOLO_WORLD_LICENSE).\n\n## \ud83c\udfc6 Contributing\n\nWe love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you \ud83d\ude4f to all our contributors!\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "EfficientSAM + YOLO-World base model for use with Autodistill",
    "version": "0.1.1",
    "project_urls": {
        "Homepage": "https://github.com/roboflow/autodistill-efficient-yolo-world"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6bdec28b11dead9f88ea3551ef11b477fd286f130a1654e4f2619e801777e5e3",
                "md5": "0bc0fa5485f6bd95c25bd2083f0d57af",
                "sha256": "ef631c6f1413c4c66d66ae7c94675d3613a63d777f7d849e0955b55fe45494b2"
            },
            "downloads": -1,
            "filename": "autodistill_efficient_yolo_world-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "0bc0fa5485f6bd95c25bd2083f0d57af",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 3639,
            "upload_time": "2024-02-21T09:31:13",
            "upload_time_iso_8601": "2024-02-21T09:31:13.165321Z",
            "url": "https://files.pythonhosted.org/packages/6b/de/c28b11dead9f88ea3551ef11b477fd286f130a1654e4f2619e801777e5e3/autodistill_efficient_yolo_world-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "632f145af030407771d48be1bb862a9fc6efdba085376bee681dd74fbe85df4d",
                "md5": "c2b60140b7084c6ae6ca90b97662d47f",
                "sha256": "a23f90388868e5d1f40482e85a64e5753d24e88f3e38c70231b9657e2eca0bca"
            },
            "downloads": -1,
            "filename": "autodistill-efficient-yolo-world-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "c2b60140b7084c6ae6ca90b97662d47f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 5726,
            "upload_time": "2024-02-21T09:31:15",
            "upload_time_iso_8601": "2024-02-21T09:31:15.148632Z",
            "url": "https://files.pythonhosted.org/packages/63/2f/145af030407771d48be1bb862a9fc6efdba085376bee681dd74fbe85df4d/autodistill-efficient-yolo-world-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-21 09:31:15",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "roboflow",
    "github_project": "autodistill-efficient-yolo-world",
    "github_not_found": true,
    "lcname": "autodistill-efficient-yolo-world"
}
        
Elapsed time: 0.28781s