autodistill-efficientsam


Nameautodistill-efficientsam JSON
Version 0.1.0 PyPI version JSON
download
home_page
SummaryEfficientSAM model for use with Autodistill
upload_time2024-02-16 18:39:45
maintainer
docs_urlNone
authorRoboflow
requires_python>=3.7
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
  <p>
    <a align="center" href="" target="_blank">
      <img
        width="850"
        src="https://media.roboflow.com/open-source/autodistill/autodistill-banner.png"
      >
    </a>
  </p>
</div>

# Autodistill EfficientSAM Module

This repository contains the code supporting the EfficientSAM base model for use with [Autodistill](https://github.com/autodistill/autodistill).

[EfficientSAM](https://github.com/yformer/EfficientSAM) is an image segmentation model that was introduced in the paper "[EfficientSAM: Leveraged Masked Image Pretraining for Efficient Segment Anything](https://yformer.github.io/efficient-sam/)". You can use EfficientSAM with autodistill for image segmentation.

Read the full [Autodistill documentation](https://autodistill.github.io/autodistill/).

## Installation

To use EfficientSAM with Autodistill, you need to install the following dependency:


```bash
pip3 install autodistill-efficientsam
```

## Quickstart

This model returns segmentation masks for all objects in an image.

If you want segmentation masks only for specific objects matching a text prompt, we recommend combining EfficientSAM with a zero-shot detection model like GroundingDINO.

Read our ComposedDetectionModel documentation for more information about how to combine models like EfficientSAM and GroundingDINO.

```python
from autodistill_efficientsam import EfficientSAM

# define an ontology to map class names to our EfficientSAM prompt
# the ontology dictionary has the format {caption: class}
# where caption is the prompt sent to the base model, and class is the label that will
# be saved for that caption in the generated annotations
# then, load the model
base_model = EfficientSAM(None)

masks = base_model.predict("./image.png")
```

## License

This project is licensed under an [Apache 2.0 license](LICENSE).

## 🏆 Contributing

We love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you 🙏 to all our contributors!

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "autodistill-efficientsam",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "",
    "author": "Roboflow",
    "author_email": "support@roboflow.com",
    "download_url": "https://files.pythonhosted.org/packages/e9/d8/6eb11f1ccb8c7c7edbf9e27d7e3709a0a777a7b6706f3ed0fe71643cdd5c/autodistill-efficientsam-0.1.0.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\n  <p>\n    <a align=\"center\" href=\"\" target=\"_blank\">\n      <img\n        width=\"850\"\n        src=\"https://media.roboflow.com/open-source/autodistill/autodistill-banner.png\"\n      >\n    </a>\n  </p>\n</div>\n\n# Autodistill EfficientSAM Module\n\nThis repository contains the code supporting the EfficientSAM base model for use with [Autodistill](https://github.com/autodistill/autodistill).\n\n[EfficientSAM](https://github.com/yformer/EfficientSAM) is an image segmentation model that was introduced in the paper \"[EfficientSAM: Leveraged Masked Image Pretraining for Efficient Segment Anything](https://yformer.github.io/efficient-sam/)\". You can use EfficientSAM with autodistill for image segmentation.\n\nRead the full [Autodistill documentation](https://autodistill.github.io/autodistill/).\n\n## Installation\n\nTo use EfficientSAM with Autodistill, you need to install the following dependency:\n\n\n```bash\npip3 install autodistill-efficientsam\n```\n\n## Quickstart\n\nThis model returns segmentation masks for all objects in an image.\n\nIf you want segmentation masks only for specific objects matching a text prompt, we recommend combining EfficientSAM with a zero-shot detection model like GroundingDINO.\n\nRead our ComposedDetectionModel documentation for more information about how to combine models like EfficientSAM and GroundingDINO.\n\n```python\nfrom autodistill_efficientsam import EfficientSAM\n\n# define an ontology to map class names to our EfficientSAM prompt\n# the ontology dictionary has the format {caption: class}\n# where caption is the prompt sent to the base model, and class is the label that will\n# be saved for that caption in the generated annotations\n# then, load the model\nbase_model = EfficientSAM(None)\n\nmasks = base_model.predict(\"./image.png\")\n```\n\n## License\n\nThis project is licensed under an [Apache 2.0 license](LICENSE).\n\n## \ud83c\udfc6 Contributing\n\nWe love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you \ud83d\ude4f to all our contributors!\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "EfficientSAM model for use with Autodistill",
    "version": "0.1.0",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "cedf4ccdf58f0a4e70602931d53693778d1b82c5e0ad3885a7686316afbcd3ee",
                "md5": "fed1a5e9a3b5f18eaa1277af6ba4a278",
                "sha256": "a9c552d0724da7cf6564990f413061ed4170930200827337ea1e3527ee814f5e"
            },
            "downloads": -1,
            "filename": "autodistill_efficientsam-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "fed1a5e9a3b5f18eaa1277af6ba4a278",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 8157,
            "upload_time": "2024-02-16T18:39:43",
            "upload_time_iso_8601": "2024-02-16T18:39:43.964543Z",
            "url": "https://files.pythonhosted.org/packages/ce/df/4ccdf58f0a4e70602931d53693778d1b82c5e0ad3885a7686316afbcd3ee/autodistill_efficientsam-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e9d86eb11f1ccb8c7c7edbf9e27d7e3709a0a777a7b6706f3ed0fe71643cdd5c",
                "md5": "612cd56f649d595977a03bd9335a1bcc",
                "sha256": "ce8b0349a08d18a8e27472d5e9bdff3321da1bfa82dca87a6c1c731a4ec71f76"
            },
            "downloads": -1,
            "filename": "autodistill-efficientsam-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "612cd56f649d595977a03bd9335a1bcc",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 7724,
            "upload_time": "2024-02-16T18:39:45",
            "upload_time_iso_8601": "2024-02-16T18:39:45.362708Z",
            "url": "https://files.pythonhosted.org/packages/e9/d8/6eb11f1ccb8c7c7edbf9e27d7e3709a0a777a7b6706f3ed0fe71643cdd5c/autodistill-efficientsam-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-16 18:39:45",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "autodistill-efficientsam"
}
        
Elapsed time: 0.20767s