Name | autodistill-efficientsam JSON |
Version |
0.1.0
JSON |
| download |
home_page | |
Summary | EfficientSAM model for use with Autodistill |
upload_time | 2024-02-16 18:39:45 |
maintainer | |
docs_url | None |
author | Roboflow |
requires_python | >=3.7 |
license | |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
<div align="center">
<p>
<a align="center" href="" target="_blank">
<img
width="850"
src="https://media.roboflow.com/open-source/autodistill/autodistill-banner.png"
>
</a>
</p>
</div>
# Autodistill EfficientSAM Module
This repository contains the code supporting the EfficientSAM base model for use with [Autodistill](https://github.com/autodistill/autodistill).
[EfficientSAM](https://github.com/yformer/EfficientSAM) is an image segmentation model that was introduced in the paper "[EfficientSAM: Leveraged Masked Image Pretraining for Efficient Segment Anything](https://yformer.github.io/efficient-sam/)". You can use EfficientSAM with autodistill for image segmentation.
Read the full [Autodistill documentation](https://autodistill.github.io/autodistill/).
## Installation
To use EfficientSAM with Autodistill, you need to install the following dependency:
```bash
pip3 install autodistill-efficientsam
```
## Quickstart
This model returns segmentation masks for all objects in an image.
If you want segmentation masks only for specific objects matching a text prompt, we recommend combining EfficientSAM with a zero-shot detection model like GroundingDINO.
Read our ComposedDetectionModel documentation for more information about how to combine models like EfficientSAM and GroundingDINO.
```python
from autodistill_efficientsam import EfficientSAM
# define an ontology to map class names to our EfficientSAM prompt
# the ontology dictionary has the format {caption: class}
# where caption is the prompt sent to the base model, and class is the label that will
# be saved for that caption in the generated annotations
# then, load the model
base_model = EfficientSAM(None)
masks = base_model.predict("./image.png")
```
## License
This project is licensed under an [Apache 2.0 license](LICENSE).
## 🏆 Contributing
We love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you 🙏 to all our contributors!
Raw data
{
"_id": null,
"home_page": "",
"name": "autodistill-efficientsam",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "",
"author": "Roboflow",
"author_email": "support@roboflow.com",
"download_url": "https://files.pythonhosted.org/packages/e9/d8/6eb11f1ccb8c7c7edbf9e27d7e3709a0a777a7b6706f3ed0fe71643cdd5c/autodistill-efficientsam-0.1.0.tar.gz",
"platform": null,
"description": "<div align=\"center\">\n <p>\n <a align=\"center\" href=\"\" target=\"_blank\">\n <img\n width=\"850\"\n src=\"https://media.roboflow.com/open-source/autodistill/autodistill-banner.png\"\n >\n </a>\n </p>\n</div>\n\n# Autodistill EfficientSAM Module\n\nThis repository contains the code supporting the EfficientSAM base model for use with [Autodistill](https://github.com/autodistill/autodistill).\n\n[EfficientSAM](https://github.com/yformer/EfficientSAM) is an image segmentation model that was introduced in the paper \"[EfficientSAM: Leveraged Masked Image Pretraining for Efficient Segment Anything](https://yformer.github.io/efficient-sam/)\". You can use EfficientSAM with autodistill for image segmentation.\n\nRead the full [Autodistill documentation](https://autodistill.github.io/autodistill/).\n\n## Installation\n\nTo use EfficientSAM with Autodistill, you need to install the following dependency:\n\n\n```bash\npip3 install autodistill-efficientsam\n```\n\n## Quickstart\n\nThis model returns segmentation masks for all objects in an image.\n\nIf you want segmentation masks only for specific objects matching a text prompt, we recommend combining EfficientSAM with a zero-shot detection model like GroundingDINO.\n\nRead our ComposedDetectionModel documentation for more information about how to combine models like EfficientSAM and GroundingDINO.\n\n```python\nfrom autodistill_efficientsam import EfficientSAM\n\n# define an ontology to map class names to our EfficientSAM prompt\n# the ontology dictionary has the format {caption: class}\n# where caption is the prompt sent to the base model, and class is the label that will\n# be saved for that caption in the generated annotations\n# then, load the model\nbase_model = EfficientSAM(None)\n\nmasks = base_model.predict(\"./image.png\")\n```\n\n## License\n\nThis project is licensed under an [Apache 2.0 license](LICENSE).\n\n## \ud83c\udfc6 Contributing\n\nWe love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you \ud83d\ude4f to all our contributors!\n",
"bugtrack_url": null,
"license": "",
"summary": "EfficientSAM model for use with Autodistill",
"version": "0.1.0",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "cedf4ccdf58f0a4e70602931d53693778d1b82c5e0ad3885a7686316afbcd3ee",
"md5": "fed1a5e9a3b5f18eaa1277af6ba4a278",
"sha256": "a9c552d0724da7cf6564990f413061ed4170930200827337ea1e3527ee814f5e"
},
"downloads": -1,
"filename": "autodistill_efficientsam-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "fed1a5e9a3b5f18eaa1277af6ba4a278",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 8157,
"upload_time": "2024-02-16T18:39:43",
"upload_time_iso_8601": "2024-02-16T18:39:43.964543Z",
"url": "https://files.pythonhosted.org/packages/ce/df/4ccdf58f0a4e70602931d53693778d1b82c5e0ad3885a7686316afbcd3ee/autodistill_efficientsam-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "e9d86eb11f1ccb8c7c7edbf9e27d7e3709a0a777a7b6706f3ed0fe71643cdd5c",
"md5": "612cd56f649d595977a03bd9335a1bcc",
"sha256": "ce8b0349a08d18a8e27472d5e9bdff3321da1bfa82dca87a6c1c731a4ec71f76"
},
"downloads": -1,
"filename": "autodistill-efficientsam-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "612cd56f649d595977a03bd9335a1bcc",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 7724,
"upload_time": "2024-02-16T18:39:45",
"upload_time_iso_8601": "2024-02-16T18:39:45.362708Z",
"url": "https://files.pythonhosted.org/packages/e9/d8/6eb11f1ccb8c7c7edbf9e27d7e3709a0a777a7b6706f3ed0fe71643cdd5c/autodistill-efficientsam-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-02-16 18:39:45",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "autodistill-efficientsam"
}