autodistill-fastsam


Nameautodistill-fastsam JSON
Version 0.1.1 PyPI version JSON
download
home_pagehttps://github.com/autodistill/autodistill-fastsam
SummaryFastSAM module for use with Autodistill
upload_time2023-12-06 09:38:23
maintainer
docs_urlNone
authorRoboflow
requires_python>=3.7
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
  <p>
    <a align="center" href="" target="_blank">
      <img
        width="850"
        src="https://media.roboflow.com/open-source/autodistill/autodistill-banner.png"
      >
    </a>
  </p>
</div>

# Autodistill FastSAM Module

This repository contains the code supporting the FastSAM base model for use with [Autodistill](https://github.com/autodistill/autodistill).

[FastSAM](https://github.com/CASIA-IVA-Lab/FastSAM) is a segmentation model trained on 2% of the SA-1B dataset used to train the [Segment Anything Model](https://github.com/facebookresearch/segment-anything).

Read the full [Autodistill documentation](https://autodistill.github.io/autodistill/).

Read the [FastSAM Autodistill documentation](https://autodistill.github.io/autodistill/base_models/fastsam/).

## Installation

To use FastSAM with autodistill, you need to install the following dependency:

```bash
pip3 install autodistill-fastsam
```

## Quickstart

> [!NOTE]

> When you first run this model, the installation process will start. Inference may take a few seconds (in testing, up to 30 seconds) while the model is downloaded and installed. Once the model is installed, inference will be much faster.

```python
from autodistill_fastsam import FastSAM

# define an ontology to map class names to our FastSAM prompt
# the ontology dictionary has the format {caption: class}
# where caption is the prompt sent to the base model, and class is the label that will
# be saved for that caption in the generated annotations
# then, load the model
base_model = FastSAM(
    ontology=CaptionOntology(
        {
            "person": "person",
            "a forklift": "forklift"
        }
    )
)
base_model.label("./context_images", extension=".jpeg")
```


## License

This project is licensed under an [Apache 2.0 license](LICENSE).

## 🏆 Contributing

We love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you 🙏 to all our contributors!

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/autodistill/autodistill-fastsam",
    "name": "autodistill-fastsam",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "",
    "author": "Roboflow",
    "author_email": "support@roboflow.com",
    "download_url": "https://files.pythonhosted.org/packages/da/a8/ef8366ea661d09a938428b74d7a878a62520b5956b827b2191a66c1cbbcc/autodistill-fastsam-0.1.1.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\n  <p>\n    <a align=\"center\" href=\"\" target=\"_blank\">\n      <img\n        width=\"850\"\n        src=\"https://media.roboflow.com/open-source/autodistill/autodistill-banner.png\"\n      >\n    </a>\n  </p>\n</div>\n\n# Autodistill FastSAM Module\n\nThis repository contains the code supporting the FastSAM base model for use with [Autodistill](https://github.com/autodistill/autodistill).\n\n[FastSAM](https://github.com/CASIA-IVA-Lab/FastSAM) is a segmentation model trained on 2% of the SA-1B dataset used to train the [Segment Anything Model](https://github.com/facebookresearch/segment-anything).\n\nRead the full [Autodistill documentation](https://autodistill.github.io/autodistill/).\n\nRead the [FastSAM Autodistill documentation](https://autodistill.github.io/autodistill/base_models/fastsam/).\n\n## Installation\n\nTo use FastSAM with autodistill, you need to install the following dependency:\n\n```bash\npip3 install autodistill-fastsam\n```\n\n## Quickstart\n\n> [!NOTE]\n\n> When you first run this model, the installation process will start. Inference may take a few seconds (in testing, up to 30 seconds) while the model is downloaded and installed. Once the model is installed, inference will be much faster.\n\n```python\nfrom autodistill_fastsam import FastSAM\n\n# define an ontology to map class names to our FastSAM prompt\n# the ontology dictionary has the format {caption: class}\n# where caption is the prompt sent to the base model, and class is the label that will\n# be saved for that caption in the generated annotations\n# then, load the model\nbase_model = FastSAM(\n    ontology=CaptionOntology(\n        {\n            \"person\": \"person\",\n            \"a forklift\": \"forklift\"\n        }\n    )\n)\nbase_model.label(\"./context_images\", extension=\".jpeg\")\n```\n\n\n## License\n\nThis project is licensed under an [Apache 2.0 license](LICENSE).\n\n## \ud83c\udfc6 Contributing\n\nWe love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you \ud83d\ude4f to all our contributors!\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "FastSAM module for use with Autodistill",
    "version": "0.1.1",
    "project_urls": {
        "Homepage": "https://github.com/autodistill/autodistill-fastsam"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f5616d32300564997ac95de1b30246e80737a20a66e58f688d7baf95cb6b5466",
                "md5": "2896faf2d9de936c94924ef1778f5543",
                "sha256": "633c2f28390095baa91c3aeed7f69ad17cb38896c6831f9da9ad96086901fa4c"
            },
            "downloads": -1,
            "filename": "autodistill_fastsam-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2896faf2d9de936c94924ef1778f5543",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 8929,
            "upload_time": "2023-12-06T09:38:21",
            "upload_time_iso_8601": "2023-12-06T09:38:21.655416Z",
            "url": "https://files.pythonhosted.org/packages/f5/61/6d32300564997ac95de1b30246e80737a20a66e58f688d7baf95cb6b5466/autodistill_fastsam-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "daa8ef8366ea661d09a938428b74d7a878a62520b5956b827b2191a66c1cbbcc",
                "md5": "203237de037c541caae25da2fe316797",
                "sha256": "87aad8b2ae9f6ec785bf43a21c5ec651e3eb483fca30692733f6eb97a85e7c39"
            },
            "downloads": -1,
            "filename": "autodistill-fastsam-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "203237de037c541caae25da2fe316797",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 8240,
            "upload_time": "2023-12-06T09:38:23",
            "upload_time_iso_8601": "2023-12-06T09:38:23.015962Z",
            "url": "https://files.pythonhosted.org/packages/da/a8/ef8366ea661d09a938428b74d7a878a62520b5956b827b2191a66c1cbbcc/autodistill-fastsam-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-12-06 09:38:23",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "autodistill",
    "github_project": "autodistill-fastsam",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "autodistill-fastsam"
}
        
Elapsed time: 0.24937s