autodistill-fastvit


Nameautodistill-fastvit JSON
Version 0.1.2 PyPI version JSON
download
home_pagehttps://github.com/autodistill/autodistill-fastvit
SummaryFastViT model for use with Autodistill
upload_time2024-05-20 14:48:42
maintainerNone
docs_urlNone
authorRoboflow
requires_python>=3.7
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
  <p>
    <a align="center" href="" target="_blank">
      <img
        width="850"
        src="https://media.roboflow.com/open-source/autodistill/autodistill-banner.png"
      >
    </a>
  </p>
</div>

# Autodistill FastViT Module

This repository contains the code supporting the FastViT base model for use with [Autodistill](https://github.com/autodistill/autodistill).

[FastViT](https://github.com/apple/ml-fastvit), developed by Apple, is a classification model that supports zero-shot classification.

Read the full [Autodistill documentation](https://autodistill.github.io/autodistill/).

Read the [FastViT Autodistill documentation](https://autodistill.github.io/autodistill/base_models/fastvit/).

## Installation

To use FastViT with autodistill, you need to install the following dependency:


```bash
pip3 install autodistill-fastvit
```

## Quickstart

FastViT works using the ImageNet-1k class list. This class list is available in the `FASTVIT_IMAGENET_1K_CLASSES` variable.

You can provide classes from the list to retrieve predictions for a specific class in the list. You can also provide a custom ontology to map classes from the list to your own classes.

```python
from autodistill_fastvit import FastViT, FASTVIT_IMAGENET_1K_CLASSES
from autodistill.detection import CaptionOntology

# zero shot with no prompts
base_model = FastViT(None)

# zero shot with prompts from FASTVIT_IMAGENET_1K_CLASSES
base_model = FastViT(
    ontology=CaptionOntology(
        {
            "coffeemaker": "coffeemaker",
            "ice cream": "ice cream"
        }
    )
)

predictions = base_model.predict("./example.png")

labels = [FASTVIT_IMAGENET_1K_CLASSES[i] for i in predictions.class_id.tolist()]

print(labels)
```


## License

See [LICENSE](LICENSE) for the model license.

## 🏆 Contributing

We love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you 🙏 to all our contributors!

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/autodistill/autodistill-fastvit",
    "name": "autodistill-fastvit",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": null,
    "author": "Roboflow",
    "author_email": "support@roboflow.com",
    "download_url": "https://files.pythonhosted.org/packages/bb/0a/f21e7f0ed4379e1a74ca27dcfb0a097acb48e939408c31b5bb5c927f676d/autodistill_fastvit-0.1.2.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\n  <p>\n    <a align=\"center\" href=\"\" target=\"_blank\">\n      <img\n        width=\"850\"\n        src=\"https://media.roboflow.com/open-source/autodistill/autodistill-banner.png\"\n      >\n    </a>\n  </p>\n</div>\n\n# Autodistill FastViT Module\n\nThis repository contains the code supporting the FastViT base model for use with [Autodistill](https://github.com/autodistill/autodistill).\n\n[FastViT](https://github.com/apple/ml-fastvit), developed by Apple, is a classification model that supports zero-shot classification.\n\nRead the full [Autodistill documentation](https://autodistill.github.io/autodistill/).\n\nRead the [FastViT Autodistill documentation](https://autodistill.github.io/autodistill/base_models/fastvit/).\n\n## Installation\n\nTo use FastViT with autodistill, you need to install the following dependency:\n\n\n```bash\npip3 install autodistill-fastvit\n```\n\n## Quickstart\n\nFastViT works using the ImageNet-1k class list. This class list is available in the `FASTVIT_IMAGENET_1K_CLASSES` variable.\n\nYou can provide classes from the list to retrieve predictions for a specific class in the list. You can also provide a custom ontology to map classes from the list to your own classes.\n\n```python\nfrom autodistill_fastvit import FastViT, FASTVIT_IMAGENET_1K_CLASSES\nfrom autodistill.detection import CaptionOntology\n\n# zero shot with no prompts\nbase_model = FastViT(None)\n\n# zero shot with prompts from FASTVIT_IMAGENET_1K_CLASSES\nbase_model = FastViT(\n    ontology=CaptionOntology(\n        {\n            \"coffeemaker\": \"coffeemaker\",\n            \"ice cream\": \"ice cream\"\n        }\n    )\n)\n\npredictions = base_model.predict(\"./example.png\")\n\nlabels = [FASTVIT_IMAGENET_1K_CLASSES[i] for i in predictions.class_id.tolist()]\n\nprint(labels)\n```\n\n\n## License\n\nSee [LICENSE](LICENSE) for the model license.\n\n## \ud83c\udfc6 Contributing\n\nWe love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you \ud83d\ude4f to all our contributors!\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "FastViT model for use with Autodistill",
    "version": "0.1.2",
    "project_urls": {
        "Homepage": "https://github.com/autodistill/autodistill-fastvit"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d5bd39cd9567c3212195f3f46eaa0bba0da31dce1acfb520d4c8fc6c933a0fd7",
                "md5": "5b8ee26ed012733cfd2f9af3e372a0ec",
                "sha256": "f478c93ee934dfd07b4542fb3aec43d9f765766d40f061debb7e36afab9cbbdf"
            },
            "downloads": -1,
            "filename": "autodistill_fastvit-0.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "5b8ee26ed012733cfd2f9af3e372a0ec",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 11298,
            "upload_time": "2024-05-20T14:48:40",
            "upload_time_iso_8601": "2024-05-20T14:48:40.803332Z",
            "url": "https://files.pythonhosted.org/packages/d5/bd/39cd9567c3212195f3f46eaa0bba0da31dce1acfb520d4c8fc6c933a0fd7/autodistill_fastvit-0.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "bb0af21e7f0ed4379e1a74ca27dcfb0a097acb48e939408c31b5bb5c927f676d",
                "md5": "ad773957833e77f82830f94181ed3f82",
                "sha256": "2a661d941e802dce473774abd8cdcb413c43a88426578c008d4e7ef0d48060b9"
            },
            "downloads": -1,
            "filename": "autodistill_fastvit-0.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "ad773957833e77f82830f94181ed3f82",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 18738,
            "upload_time": "2024-05-20T14:48:42",
            "upload_time_iso_8601": "2024-05-20T14:48:42.712708Z",
            "url": "https://files.pythonhosted.org/packages/bb/0a/f21e7f0ed4379e1a74ca27dcfb0a097acb48e939408c31b5bb5c927f676d/autodistill_fastvit-0.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-05-20 14:48:42",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "autodistill",
    "github_project": "autodistill-fastvit",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "autodistill-fastvit"
}
        
Elapsed time: 0.22292s