<div align="center">
<p>
<a align="center" href="" target="_blank">
<img
width="850"
src="https://media.roboflow.com/open-source/autodistill/autodistill-banner.png?3"
>
</a>
</p>
</div>
# Autodistill Florence 2 Module
This repository contains the code supporting the CLIP base model for use with [Autodistill](https://github.com/autodistill/autodistill).
[Florence 2](https://huggingface.co/microsoft/Florence-2-large), introduced in the paper [Florence-2: Advancing a Unified Representation for a Variety of Vision Tasks](https://arxiv.org/abs/2311.06242) is a multimodal vision model.
You can use Florence 2 to generate object detection annotations for use in training smaller object detection models with Autodistill.
Read the full [Autodistill documentation](https://autodistill.github.io/autodistill/).
Read the [Florence 2 Autodistill documentation](https://autodistill.github.io/autodistill/base_models/florence2/).
## Installation
To use Florence 2 with Autodistill, you need to install the following dependency:
```bash
pip3 install autodistill-florence-2
```
## Quickstart
```python
from autodistill_florence_2 import Florence2
# define an ontology to map class names to our Florence 2 prompt
# the ontology dictionary has the format {caption: class}
# where caption is the prompt sent to the base model, and class is the label that will
# be saved for that caption in the generated annotations
# then, load the model
base_model = Florence2(
ontology=CaptionOntology(
{
"person": "person",
"a forklift": "forklift"
}
)
)
base_model.label("./context_images", extension=".jpeg")
```
## License
This project is licensed under an MIT license. See the [Florence 2 license](https://huggingface.co/microsoft/Florence-2-large) for more information about the Florence 2 model license.
## 🏆 Contributing
We love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you 🙏 to all our contributors!
Raw data
{
"_id": null,
"home_page": "https://github.com/autodistill/autodistill-florence-2",
"name": "autodistill-florence-2",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": null,
"author": "Roboflow",
"author_email": "support@roboflow.com",
"download_url": "https://files.pythonhosted.org/packages/b0/8d/abee892bbce6e13ae2b30498eb115accd6ce5b3e8ef68b7e8886ea338d8a/autodistill_florence_2-0.1.0.tar.gz",
"platform": null,
"description": "<div align=\"center\">\n <p>\n <a align=\"center\" href=\"\" target=\"_blank\">\n <img\n width=\"850\"\n src=\"https://media.roboflow.com/open-source/autodistill/autodistill-banner.png?3\"\n >\n </a>\n </p>\n</div>\n\n# Autodistill Florence 2 Module\n\nThis repository contains the code supporting the CLIP base model for use with [Autodistill](https://github.com/autodistill/autodistill).\n\n[Florence 2](https://huggingface.co/microsoft/Florence-2-large), introduced in the paper [Florence-2: Advancing a Unified Representation for a Variety of Vision Tasks](https://arxiv.org/abs/2311.06242) is a multimodal vision model.\n\nYou can use Florence 2 to generate object detection annotations for use in training smaller object detection models with Autodistill.\n\nRead the full [Autodistill documentation](https://autodistill.github.io/autodistill/).\n\nRead the [Florence 2 Autodistill documentation](https://autodistill.github.io/autodistill/base_models/florence2/).\n\n## Installation\n\nTo use Florence 2 with Autodistill, you need to install the following dependency:\n\n```bash\npip3 install autodistill-florence-2\n```\n\n## Quickstart\n\n```python\nfrom autodistill_florence_2 import Florence2\n\n# define an ontology to map class names to our Florence 2 prompt\n# the ontology dictionary has the format {caption: class}\n# where caption is the prompt sent to the base model, and class is the label that will\n# be saved for that caption in the generated annotations\n# then, load the model\nbase_model = Florence2(\n ontology=CaptionOntology(\n {\n \"person\": \"person\",\n \"a forklift\": \"forklift\"\n }\n )\n)\nbase_model.label(\"./context_images\", extension=\".jpeg\")\n```\n\n## License\n\nThis project is licensed under an MIT license. See the [Florence 2 license](https://huggingface.co/microsoft/Florence-2-large) for more information about the Florence 2 model license.\n\n## \ud83c\udfc6 Contributing\n\nWe love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you \ud83d\ude4f to all our contributors!\n",
"bugtrack_url": null,
"license": null,
"summary": "Use Florence 2 to auto-label data for use in training fine-tuned object detection models.",
"version": "0.1.0",
"project_urls": {
"Homepage": "https://github.com/autodistill/autodistill-florence-2"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "0bd2009ae9406d8190a2491aa86fee5099f885eb8bdf302e60b961c9af06e868",
"md5": "a25dd5b2f29bb1f6baa65130cafa5340",
"sha256": "b3e9f7ebe455d0d2537bac24f4032ce895958d972abf1721c8ccb9fe45595a77"
},
"downloads": -1,
"filename": "autodistill_florence_2-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "a25dd5b2f29bb1f6baa65130cafa5340",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 3830,
"upload_time": "2024-06-19T14:36:44",
"upload_time_iso_8601": "2024-06-19T14:36:44.453375Z",
"url": "https://files.pythonhosted.org/packages/0b/d2/009ae9406d8190a2491aa86fee5099f885eb8bdf302e60b961c9af06e868/autodistill_florence_2-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b08dabee892bbce6e13ae2b30498eb115accd6ce5b3e8ef68b7e8886ea338d8a",
"md5": "e83882917d8956b7828630fc7cb48f18",
"sha256": "f2bc5e0135cd06de4cd7d62f64a30beb01978ea65f99351cb17cefc90a731319"
},
"downloads": -1,
"filename": "autodistill_florence_2-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "e83882917d8956b7828630fc7cb48f18",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 3692,
"upload_time": "2024-06-19T14:36:46",
"upload_time_iso_8601": "2024-06-19T14:36:46.138462Z",
"url": "https://files.pythonhosted.org/packages/b0/8d/abee892bbce6e13ae2b30498eb115accd6ce5b3e8ef68b7e8886ea338d8a/autodistill_florence_2-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-06-19 14:36:46",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "autodistill",
"github_project": "autodistill-florence-2",
"github_not_found": true,
"lcname": "autodistill-florence-2"
}